151
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect Geometric Detail on the Outcome of DEM Simulations with Polyhedral Particles

&
Pages 426-439 | Received 26 Jan 2021, Accepted 06 Apr 2022, Published online: 21 Apr 2022

References

  • Ahrens, J., Geveci, B., and Law, C., 2005. ParaView: an End-User Tool for Large Data Visualization. Visualization Handbook, Elsevier.
  • André, F.P. and Tavares, L.M., 2020. Simulating a laboratory-scale cone crusher in DEM using polyhedral particles. Powder Technology, 372, 2–371. doi:10.1016/j.powtec.2020.06.016
  • Burkardt, J., 2009. TET_MESH_L2Q. Retrieved from https://people.sc.fsu.edu/~jburkardt/m_src/tet_mesh_l2q/tet_mesh_l2q.html
  • Cho, N., Martin, C.D., and Sego, D.C., 2007. A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 44 (7), 997–1010. doi:10.1016/j.ijrmms.2007.02.002
  • Chung, Y.-C. and Ooi, J.Y., 2011. Benchmark tests for verifying discrete element modeling codes at particle impact level. Granular Matter, 13 (5), 643–656. doi:10.1007/s10035-011-0277-0
  • Coll, A., et al. 2016. Reference Manual. Retrieved from GiD, The personal pre and post processor: http://www.gidhome.com/documents/referencemanual/PREPROCESSING/Mesh Menu/Element type
  • Cundall, P.A. and Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. Geotechnique, 29 (1), 47–65. doi:10.1680/geot.1979.29.1.47
  • Garland, M. and Heckbert, P.S., 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, Los Angeles, CA, USA. ACM Press/Addison-Wesley Publishing Co., 209–216.
  • Gladkyy, A. and Kuna, M., 2017. DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion. Granular Matter, 19 (41), 1–11. doi:10.1007/s10035-017-0731-8
  • Govender, N., et al., 2018. A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Applied Mathematics and Computation, 319, 318–336. doi:10.1016/j.amc.2017.03.037
  • He, H., et al., 2015. On the shape simulation of aggregate and cement particles in a DEM system. Advances in Materials Science and Engineering, 692768. https://www.hindawi.com/journals/amse/2015/692768/
  • Huang, H. and Tutumluer, E., 2014. Image-Aided Element Shape Generation Method in Discrete-Element Modeling for Railroad Ballast. Journal of Materials in Civil Engineering, 26 (3), 527–535. doi:10.1061/(ASCE)MT.1943-5533.0000839
  • Ji, S., Chen, S., and Liu, L., 2019. Coupled DEM-SPH method for interaction between dilated polyhedral particles and fluid. Mathematical Problems in Engineering, 2019, 49878801, 1–11. doi:10.1155/2019/4987801
  • Latham, J.-P. and Munjiza, A., 2004. The modelling of particle systems with real shapes. Phil. Trans. R. Soc. Lond. A, 362 (1822), 1953–1972. doi:10.1098/rsta.2004.1425
  • Latham, J.-P., et al., 2008. Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation. Minerals Engineering, 21 (11), 797–805. doi:10.1016/j.mineng.2008.05.015
  • Lei, X.L., et al., 2019. Influence of particle shape on liner wear in tumbling mills: a DEM study. Powder Technology, 350, 26–35. doi:10.1016/j.powtec.2019.03.033
  • Liu, Y., et al., 2017. Discrete element modeling of realistic particle shapes in stone-based mixtures through MATLAB-based imaging process. Construction and Building Materials, 143, 169–178. doi:10.1016/j.conbuildmat.2017.03.037
  • Liu, L. and Ji, S., 2019. Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granular Matter, 21 (41), 1–16. doi:10.1007/s10035-019-0896-4
  • Luebke, D., et al., 2002. Level of detail for 3D graphics. New York, NY, United States: Elsevier Science Inc.
  • Munjiza, A., Owen, D.R.J., and Bicanic, N., 1995. A combined finite-discrete element method in transient dynamics of fracturing solids. Engineering Computations, 12 (1), 145–174. doi:10.1108/02644409510799532
  • Munjiza, A., 2004. The combined Finite-Discrete Element method. London, UK: John Wiley & Sons, Ltd.
  • Ngo, T. and Indraratna, B., 2020. Analysis of deformation and degradation of fouled ballast: experimental testing and DEM modeling. Int. J. Geomech, 20 (9), 06020020 1–8. doi:10.1061/(ASCE)GM.1943-5622.0001783
  • NextEngine Inc., 2014. NextEngine 3D laser scanner. Retrieved from NextEngine 3D Laser Scanner Web site: http://www.nextengine.com/
  • Potyondy, D.O., Cundall, P.A., and Lee, C., 1996. Modeling rock using bonded assemblies of circular particles. M. Aubertin, et al., eds., Proceedings of the second North American rock mechanics symposium: Rock mechanics tools and techniques, Montréal, Rotterdam: Balkema; 1937–1944.
  • Preece, D., et al., 1999. Sand production modeling using superquadric discrete elements and coupling of fluid flow and particle motion. In: Amadei, Bernard, Kranz, Robert L., Scott, Gregg A., Smeallie, Peter H. eds. 37th U.S. Rock Mechanics Symp. Balkema, Amsterdam, The Netherlands: Vail Rocks, pp. 161–167.
  • Sheng, Y., et al., 2002. 3D discrete element method (DEM) simulations of powder compaction, Discrete Element Methods. In: B.K. Cook and R.P. Jensen, eds. Numerical Modeling of Discontinua. Santa Fe, New Mexico, United States: ASCE Publication. pp. 305–310.
  • Tavares, L.M., et al., 2020. Adapting a breakage model to discrete elements using polyhedral particles. Powder Technology, 362, 208–220. doi:10.1016/j.powtec.2019.12.007
  • Wadell, H., 1935. Volume, shape and roundness of quartz particles. The Journal of Geology, 43 (3), 250–280. doi:10.1086/624298
  • Wang, P., et al., 2020. DEM analysis on the role of aggregates on concrete strength. Computers and Geotechnics, 119, 103290. doi:10.1016/j.compgeo.2019.103290
  • Xiang, J., Latham, J.-P., and Farsi, A., 2017. Algorithms and capabilities of Solidity to simulate interactions and packing of complex shapes, X. Li, et al. (eds.), Proceedings of the 7th International Conference on Discrete Element Methods, Springer Proceedings in Physics, p.188. 1–4 August, Dalian, China.
  • Xiang, J., Latham, J.-P., and Munjiza, A., 2008. Read me: tour of the “ Virtual Geoscience Workbench”. London: Queen Mary University of London (QMUL) & Imperial College of Science, Technology and Medicine (ICSTM).
  • Xiang, J. and Munjiza, A., 2008. Manual For The “Y3D” FEM/DEM Computer Program. London: Queen Mary University of London (QMUL) & Imperial College of Science, Technology and Medicine (ICSTM).
  • Xu, L., et al., 2019. Influence of particle shape on liner wear in tumbling mills: a DEM study. Powder Technology, 350, 26–35. doi:10.1016/j.powtec.2019.03.033
  • Zhan, L., et al., 2021. A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. Powder Technology, 377, 760–779. doi:10.1016/j.powtec.2020.09.046
  • Zhang, T., et al., 2020. DEM exploration of the effect of particle shape on particle breakage in granular assemblies. Computers and Geotechnics, 122, 103542. doi:10.1016/j.compgeo.2020.103542
  • Zhao, D., et al., 2006. Three-dimensional discrete element simulation for granular materials. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 23 (7), 749–770. doi:10.1108/02644400610689884
  • Zhou, C., et al., 2017. Influence of particle shape on aggregate mixture’s performance: DEM results. Road Materials and Pavement Design, 20 (2), 399–413. doi:10.1080/14680629.2017.1396236
  • Zhou, Y., et al., 2018. DEM-aided direct shear testing of granular sands incorporating realistic particle shape. Granular Matter, 20 (55), 1–12. doi:10.1007/s10035-018-0828-8
  • Zsaki, A.M. and Curran, J.H., 2005. A continuum mechanics-based framework for optimizing boundary and finite element meshes associated with underground excavations – framework. International Journal for Numerical and Analytical Methods in Geomechanics, 29 (13), 1271–1298. doi:10.1002/nag.459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.