148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of liquefaction potential by energy-based and stress-based methods and gene expressing programming (case study: Tabriz city)

, , &
Pages 517-538 | Received 16 Jul 2020, Accepted 24 Jun 2022, Published online: 18 Jul 2022

References

  • Baziar, M.H. and Sharafi, H., 2010. Assessment of silty sand liquefaction potential using hollow torsional tests—an energy approach. Soil Dynamics and Earthquake Engineering, 31 (7), 857–865. doi:10.1016/j.soildyn.2010.12.014.
  • Boulanger, R.W. and Idriss, I.M., 2012. Probabilistic standard penetration test–based liquefaction– triggering procedure. Journal of Geotechnical and Geoenvironmental, ASCE, 138 (10), 1185–1195. doi:10.1061/(ASCE)GT.1943-5606.0000700.
  • Bwambale, B. and Andrus, R.D., 2019. State of the art in the assessment of aging effects on soil liquefaction. Soil Dynamics and Earthquake Engineering, 125, 105658. doi:10.1016/j.soildyn.2019.04.032
  • Castro, G., et al., 1982. Liquefaction induced by cyclic loading. Winchester, Mass: Geotechnical Engineers Inv, p. 79.
  • Cetin, K.O., et al., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Geotechnical and Geoenvironmental Engineering, 130 (12), 12. doi:10.1061/(ASCE)1090-0241(2004)130:12(1314).
  • Cetin, K.O., et al., 2016. Summary of SPT based field case history data of cetin, database. Report No: METU/GTENG 08/16-01.
  • Cetin, K., et al., 2018. SPT-Based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard. Soil Dynamic and Earthquake Engineering, 115, 698–709.
  • Cetin, K.O., et al., 2018a. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard. Soil Dynamics and Earthquake Engineering, 115, 698–709. doi:10.1016/j.soildyn.2018.09.012
  • Cetin, K.O., et al., 2018b. Examination of differences between three SPT-based seismic soil liquefaction triggering relationships. Soil Dynamics and Earthquake Engineering, 113, 75–86. doi:10.1016/j.soildyn.2018.03.013
  • Cetin, K.O., et al., Ilga, M., Chowdhury, K., 2018c. The use of the SPT based seismic soil liquefaction triggering evaluation methodology in engineering hazard assessments. MethodsX, 5, 1556–1575. doi:10.1016/j.mex.2018.11.016
  • Chang, M., et al., 2011. Comparision of SPT-N-based analysis methods in evaluation of liquefaction potential during the 1999 Chi- chi earthquake in Taiwan. Computers and Geotechnics, 38 (3), 393–406. doi:10.1016/j.compgeo.2011.01.003.
  • Chen, G., et al., 2015. Calibration of a CRR model based on an expanded SPT-based database for assessing soil liquefaction potential. Engineering Geology, 196, 305–312. doi:10.1016/j.enggeo.2015.08.002
  • Elgamal, A., Yang, Z., and Parra, E., 2002. Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dynamic and Earthquake Engineering, 22 (4), 259–271. doi:10.1016/S0267-7261(02)00022-2.
  • Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13 (2), 87e129.
  • Ferreira, C., 2006. Gene expression programming: mathematical modeling by an artificial intelligence. 2nd ed. Springer.
  • Green, A. and Mitchell, J.K., 2003. A closer look at Arias intensity-based liquefaction evaluation procedures, Pacific conference on earthquake engineering.
  • Green, R.A., Mitchel, J.K., and Polito, K.P., 2000. An energy-based excess pore pressure generation model for cohesionless soils. Proc. John Booker Meml. Symp. Syd. Sydney, New South Wales, Australia.
  • Gutenberg, B. and Richter, C.F., 1956. Magnitude and energy of Earthquakes. Annali di Geofisica, 9, 1–15. doi:10.4401/ag-5590
  • Hu, J. and Liu, H., 2019. Identification of ground motion intensity measure and its application for predicting soil liquefaction potential based on the Bayesian network method. Engineering Geology, 248, 34–49. doi:10.1016/j.enggeo.2018.11.006
  • Idriss, I.M. and Boulanger, R.W., 2004. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26 (2–4), 115–130. doi:10.1016/j.soildyn.2004.11.023.
  • Idriss, I.M. and Boulanger, R.W., 2006. Semi-Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes. Journal of Soil Dynamics and Earthquake Engineering, Elsevier, 26, 115–130.
  • Ishihara, K., 1996. Soil behavior in earthquake geotechnics. New York: Oxford University Press.
  • Jafarian, Y., et al., 2011. On the efficiency and predictability of strain energy for the evaluation of liquefaction potential: a numerical study. Computers and Geotechnics, 38 (6), 800–808. doi:10.1016/j.compgeo.2011.06.001.
  • Johari, A. and Khodaparast, A.R., 2013a. Modelling of probability liquefaction based on standard penetration tests using the jointly distributed random variables method. Engineering Geology, 158, 1–14. doi:10.1016/j.enggeo.2013.02.007
  • Johari, A., Nakhaee, M., and Habibagahi, G., 2013b. Prediction of unsaturated soils effective stress parameter using gene expression programming. Scientia Iranica A, 20 (5), 1433–1444.
  • Johari, A., Javadi, A.A., and Najafi, H., 2016. A genetic-based model to predict maximum lateral displacement of retaining wall in granular soil. Scientia Iranica A, 23 (1), 54–65. doi:10.24200/sci.2016.2097.
  • Kanagalingam, T. and Thevanayagam, S., 2006. Energy dissipation and liquefaction assessment in sands and silty soils. GeoCongress.
  • Kokusho, T., 2013. Liquefaction potential evaluations: energy-based method versus stress-based method. The Canadian Geotechnical Journal, 50 (10), 1088–1099. doi:10.1139/cgj-2012-0456.
  • Kokusho, T. and Kaneko, Y., 2018. Energy evaluation for liquefaction-induced strain of loose sands by harmonic and irregular loading tests. Soil Dynamics and Earthquake Engineering, 114, 362–377. doi:10.1016/j.soildyn.2018.07.012
  • Kokusho, T. and Mimori, Y., 2015. Liquefaction potential evaluations by energy-based method and stress-based method for various ground motions. Soil Dynamic Sand Earthquake Engineering, 75, 130–146. doi:10.1016/j.soildyn.2015.04.002
  • Koza, J.R. and Poli, R., 2005. Genetic programming. In: E. Burke, G. Kendall, eds. Search Methodologies; Introductory Tutorialsin Optimization and Decision Support Techniques. Springer Science+Business Media, pp. 127–164.
  • Kramer, S.L., Sideras, S.S., and Greenfield, M.W., 2016. The timing of liquefaction and its utility in liquefaction hazard evaluation. Soil Dynamics and Earthquake Engineering, 91, 133–146. doi:10.1016/j.soildyn.2016.07.025
  • Liam Finn, W.D., 2002. State of the art for the evaluation of seismic liquefaction potential. Computers and Geotechnics, 29 (5), 329–341. doi:10.1016/S0266-352X(01)00031-3.
  • Lopez, H.S. and Weinert, W.R., 2004. An enhanced gene expression programming approach for symbolic regression problems. International Journal of Applied Mathematics in Computer Science, 14, 375–384.
  • Mirzaei, N., 1997. Seismic zoning of Iran, Ph.D. Dissiration: Institute of Geophysics, State seismological Bureau, Beijing, P.R. Chaina, 134 pp.
  • Muduli, P.K. and Das, S.K., 2015. Model uncertainty of SPT-based method for evaluation of seismic soil liquefaction potential using multi-gene genetic programming. Soils and Foundations, 55 (2), 258–275. doi:10.1016/j.sandf.2015.02.003.
  • Olsen, R.S. and Koester, J.P., 1995. Prediction of liquefaction resistance using the CPT. International symposium on cone penetration testing, CPT 95. Linkoping, Sweden, 251–256.
  • Olson, S.M., Green, R.A., and Obermeier, S., 2005. Geotechnical analysis of paleoseismic shaking using liquefaction features: a major updating. Engineering Geology, 76 (3–4), 235–261. doi:10.1016/j.enggeo.2004.07.008.
  • Papathanassiou, G., 2008. LPI-Based approach for calibrating the severity of liquefaction-induced failures and for assessing the probability of liquefaction surface evidence. Engineering Geology 96 (1–2), 94–104.
  • Sahebkaram Alamdari, A., et al., 2021. Seismic zoning of Tabriz area by stochastic finite fault model considering site-specific soil effects. Soils and Rocks, 44 (1), 1–13. doi:10.28927/SR.2021.047220.
  • Sahebkaram Alamdari, A. and Najafi, A., 2018. The study of the liquefaction probability and estimation of the relative importance of effective parameters using fuzzy clustering and genetic programming. Journal of Civil and Environmental Engineering, 47 (4), 37–46.
  • Sahebkaram Alamdari, A., et al., 2021. Seismic zoning of Tabriz area by stochastic finite fault model considering site-specific soil effects. Soils and Rocks, 44 (1), 1–13.
  • Samui, P. and Hariharan, R., 2014. A unified classification model for modeling of seismic liquefaction potential of soil based on CPT. Journal of Advanced Research, 6, 587–592. doi:10.1016/j.jare.2014.02.002
  • Sanjay, K. and Suzuki, K., 2008. Reliability analysis of soil liquefaction based on standard penetration test. Computers and Geotechnics, 36, 589–596. doi:10.1016/j.compgeo.2008.10.004
  • Seed, H.B., Idriss, I.M., and Arrango, 1983. Evaluation of liquefaction potential using field data. Journal of Geotechnical Engineering, ASCE, 109, 458–484. doi:10.1061/(ASCE)0733-9410(1983)109:3(458)
  • Seed, H.B. and Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97 (SM9), 1249–1273. doi:10.1061/JSFEAQ.0001662.
  • Seed, H.B., et al., 1985. The influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, ASCE, 111 (12), 1425–1445. doi:10.1061/(ASCE)0733-9410(1985)111:12(1425).
  • Shahir, H., et al., 2012. Evaluation of variation of permeability in liquefiable soil under earthquake loading. Computers and Geotechnics, 40, 74–88. doi:10.1016/j.compgeo.2011.10.003
  • Todorovska, M.I. and Trifunac, M.D., 1999. Liquefaction opportunity mapping via seismic wave energy. Journal of Geotechnical and Geoenvironmental Engineering, 125 (12), 1032–1042. doi:10.1061/(ASCE)1090-0241(1999)125:12(1032).
  • Trifunac, M.D., 1995. Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy. Soil Dynamics and Earthquake Engineering, 14 (6), 419–426. doi:10.1016/0267-7261(95)00016-N.
  • Trifunac, M.D. and Todorovska, M.I., 2004. Maximum distance and minimum energy to initiate liquefaction in water saturated sands. Soil Dynamics and Earthquake Engineering, 24 (2), 89–101. doi:10.1016/j.soildyn.2003.11.001.
  • Tsaparli, V., et al., 2017. An energy-based interpretation of sand liquefaction due to vertical ground motion. Computers and Geotechnics, 90, 1–13. doi:10.1016/j.compgeo.2017.05.006
  • Whitman, R.V., 1971. Resistance of soil to liquefaction and settlement. Soils and Foundations, 11 (4), 59–68. doi:10.3208/sandf1960.11.4_59.
  • Xu, C., et al., 2020. Study on liquefaction mechanism of saturated sand considering stress redistribution. Engineering Geology, 264, 105302. doi:10.1016/j.enggeo.2019.105302
  • Yang, Y., et al., 2017. A depth-consistent SPT-based empirical equation for evaluating sand liquefaction. Engineering Geology, 221, 41–49. doi:10.1016/j.enggeo.2017.02.032
  • Youd, T.L., et al., 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127 (4), 297–313. doi:10.1061/(ASCE)1090-0241(2001)127:4(297).
  • Zhang, J., et al., 2016. Inter-Region variability of Robertson and Wride method for liquefaction hazard analysis. Engineering Geology, 203, 191–203. doi:10.1016/j.enggeo.2015.12.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.