169
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Transient settlement estimation of shallow foundation under eccentrically inclined static and cyclic load on granular soil using artificial intelligence techniques

&
Pages 560-576 | Received 09 Dec 2021, Accepted 14 Jul 2022, Published online: 26 Jul 2022

References

  • Asrari, A.A., Shahriar, K., and Ataeepour, M., 2015. The performance of ANFIS model for prediction of deformation modulus of rock mass. Arabian Journal of Geosciences, 8 (1), 357–365. doi:10.1007/s12517-013-1097-9.
  • Atalar, C., Patra, C.R., Das, B.M., and Sivakugan, N., et al. 2013. Bearing capacity of shallow foundation under eccentrically inclined load. In: 18thInternational Conference on Soil Mechanics and Geotechnical Engineering, Paris.
  • Das, B.M., Yen, S.C., and Singh, G.,1995. Settlement of shallow foundation on sand due to cyclic loading. In: International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, 8, 385–388.
  • Das, S.K. and Basudhar, P.K., 2006. Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics, 33 (8), 454–459. doi:10.1016/j.compgeo.2006.08.006.
  • Das, S.K. and Basudhar, P.K., 2008. Prediction of residual friction angle of clays using artificial neural network. Engineering Geology, 100 (3–4), 142–145. doi:10.1016/j.enggeo.2008.03.001.
  • Das, S.K., Samui, P., and Sabat, A.K., 2012. Prediction of field hydraulic conductivity of clay liners using an artificial neural network and support vector machine. International Journal of Geomechanics, 12 (5), 606–611. doi:10.1061/(ASCE)GM.1943-5622.0000129.
  • Das, S.K., Samui, P., and Sabat, A.K., 2011. Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotechnical and Geological Engineering, 29 (3), 329–342. doi:10.1007/s10706-010-9379-4.
  • Das, S.K., et al., 2010. Prediction of swelling pressure of soil using artificial intelligence techniques. Environmental Earth Sciences, 61 (2), 393–403. doi:10.1007/s12665-009-0352-6.
  • Dhar, P., Roy, S., and Chandra, B., 2013. Behavior of rigid footing under inclined and eccentric loading. Annals of Pure and Applied Mathematics, 5 (1), 71–81.
  • Fatolahzadeh, S. and Mehdizadeh, R., 2021. Reliability assessment of shallow foundation stability under eccentric load using Monte Carlo and first order second moment method. Geotechnical and Geological Engineering, 39, 5651–5664.
  • Fattah, M.Y., Al-Mosawi, M.J., and Al-Ameri, A.F.I., 2016. Vibration response of saturated Sand - foundation System. Earthquakes and Structures, 11 (1), 83–107. doi:10.12989/eas.2016.11.1.083.
  • Fattah, M.Y., Al-Mosawi, M.J., and Al-Ameri, A.F.I., 2017a. Dynamic response of saturated soil – foundation system acted upon by vibration. Journal of Earthquake Engineering, 21 (7), 1158–1188. doi:10.1080/13632469.2016.1210060.
  • Fattah, M.Y., Al-Mosawi, M.J., and Al-Ameri, A.F.I., 2017b. Stresses and pore water pressure induced by machine foundation on saturated sand. Ocean Engineering, 146, 268–281. doi:10.1016/j.oceaneng.2017.09.055
  • Fattah, M.Y., Salim, N.M., and Alwan, K.K., 2019. Contact pressure distribution under circular shallow foundation subjected to vertical and rocking vibration modes. Journal of Building Engineering, 100908, 1–9.
  • Friedman, J.H., 1991. Multivariate adaptive regression splines. Annals of Statistics, 19 (1), 1–67.
  • Gao, W., and Chen, D. 2019. Prediction model of service life for tunnel structures in carbonation environments by genetic programming. Geomechanics and Engineering, 18 (4), 373–389. doi:10.12989/gae.2019.18.4.373.
  • Garson, G.D., 1991. Interpreting neural-network connection weights. Artificial Intelligence Expert, 6 (7), 47–51.
  • Gazetas, G., 1991. Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering, 117 (9), 1363–1381. doi:10.1061/(ASCE)0733-9410(1991)117:9(1363).
  • Kebria, D.Y., et al., 2018. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil—a case study in north of Iran. Environmental Monitoring and Assessment, 190 (1), 1–17.
  • Meyerhof, G.G., 1963. Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1 (1), 16–26. doi:10.1139/t63-003.
  • Muduli, P.K., et al., 2015. Lateral load capacity of piles in clay using genetic programming and multivariate adaptive regression spline. Indian Geotechnical Journal, 45 (3), 349–359. doi:10.1007/s40098-014-0142-2.
  • Pal, M. and Deswal, S., 2008. Modeling pile capacity using support vector machines and generalized regression neural network. Journal of Geotechnical and Geoenvironmental Engineering, 134 (7), 1021–1024. doi:10.1061/(ASCE)1090-0241(2008)134:7(1021).
  • Patra, C.R., et al., 2012. Ultimate bearing capacity of shallow strip foundation under eccentrically inclined load, Part I. International Journal of Geotechnical Engineering, 6 (3), 343–352. doi:10.3328/IJGE.2012.06.03.343-352.
  • Pham, Q.N., et al., 2020. Limit load space of rigid footing under eccentrically inclined load. Soils and Foundations, 60 (4), 811–824. doi:10.1016/j.sandf.2020.05.004.
  • Prasad, A. and Singh, V., 2011. Behavior of confined square and rectangular footings under eccentric-inclined load. International Journal of Geotechnical Engineering, 5 (2), 211–221. doi:10.3328/IJGE.2011.05.02.211-221.
  • Raymond, G.P. and Komos, F.E., 1978. Repeated load testing of a model plane strain footing. Canadian Geotechnical Journal, 15 (2), 190–201. doi:10.1139/t78-019.
  • Sahu, R., et al., 2016. Bearing capacity of shallow strip foundation on geogrid-reinforced sand subjected to inclined load. International Journal of Geotechnical Engineering, 10 (2), 183–189. doi:10.1080/19386362.2015.1105622.
  • Samui, P., 2008. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35 (3), 419–427. doi:10.1016/j.compgeo.2007.06.014.
  • Searson, D.P., 2009. GPTIPS: Genetic Programming and Symbolic Regression for MATLAB, User Guide 1–26.
  • Shahin, M.A., Jaksa, M.B., and Maier, H.R., 2002. Artificial neural network based settlement prediction formula for shallow foundations on granular soils. Australian Geomechanics: Journal and News of the Australian Geomechanics Society, 37 (4), 45–52.
  • Soleimanbeigi, A. and Hataf, N., 2005. Predicting ultimate bearing capacity of shallow foundations on reinforced cohesionless soils using artificial neural networks. Geosynthetics International, 12 (6), 321–332. doi:10.1680/gein.2005.12.6.321.
  • Xue, J. and Nag, D., 2011. Reliability analysis of shallow foundations subjected to varied inclined loads. Geotechnical Safety and Risk ISGSR, 2011, 377–384.
  • Yilmaz, I. and Kaynar, O., 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38 (5), 5958–5966. doi:10.1016/j.eswa.2010.11.027.
  • Zhang, W. and Goh, A.T., 2016. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience Frontiers, 7 (1), 45–52. doi:10.1016/j.gsf.2014.10.003.
  • Zhang, W., et al., 2015. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines. Engineering Geology, 188, 29–37. doi:10.1016/j.enggeo.2015.01.009
  • Zhang, W.G. and Goh, A.T.C., 2013. Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics, 48, 82–95. doi:10.1016/j.compgeo.2012.09.016
  • Garg, A., et al., 2014. Estimation of pore water pressure of soil using genetic programming. Geotechnical and Geological Engineering, 32 (4), 765–772. doi:10.1007/s10706-014-9755-6.
  • EPRI, 1990. Manual on Estimating Soil Properties for Foundation Design. Palo Alto, California: Electric Power Research Institute.
  • OpenSees: Computer Software, Pacific Earthquake Engineering Research Center (PEER), https://opensees.berkeley.edu/
  • Vapnik, V., Golowich, S., and Smola, A., 1996. Support vector method for function approximation, regression estimation and signal processing. Advances in Neural Information Processing Systems, 9, 281–287.
  • Smola, A.J. and Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing, 14 (3), 199–222. doi:10.1023/B:STCO.0000035301.49549.88
  • RStudio: Computer Software, https://www.rstudio.com/
  • Fikret Kurnaz, T. and Kaya, Y., 2018. The comparison of the performance of ELM, BRNN, and SVM methods for the prediction of compression index of clays. Arabian Journal of Geosciences, 11 (24), 1–14. doi:10.1007/s12517-018-4143-9
  • Samadi, M., et al., 2015. Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks. Engineering Applications of Computational Fluid Mechanics, 9 (1), 291–300. doi:10.1080/19942060.2015.1011826
  • Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685.
  • Searson, D.P., Leahy, D.E., and Willis, M.J., 2010. GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. In Proceedings of the International multiconference of engineers and computer scientists, 1, 77–80.
  • Goh, A.T., Kulhawy, F.H., and Chua, C.G., 2005. Bayesian neural network analysis of undrained side resistance of drilled shafts. Journal of Geotechnical and Geoenvironmental Engineering, 131131 (11), 84–93. doi:10.1061/(ASCE)1090-0241
  • Beura, S.K. and Bhuyan, P.K., 2018. Operational analysis of signalized street segments using multi-gene genetic programming and functional network techniques. Arabian Journal for Science and Engineering, 43 (10), 5365–5386. doi:10.1007/s13369-018-3176-4
  • Gandomi, A.H., Yun, G.J., and Alavi, A.H., 2013. An evolutionary approach for modeling of shear strength of RC deep beams. Materials and Structures, 46 (12), 2109–2119. doi:10.1617/s11527-013-0039-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.