161
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study on the effects of thermoelastic and poroelastic parameters on the geomechanical behaviour of Hot Dry Rock geothermal reservoirs

ORCID Icon, , &
Pages 301-317 | Received 04 Feb 2022, Accepted 01 Sep 2023, Published online: 09 Sep 2023

References

  • AbuAisha, M. and Loret, B., 2016. Influence of hydraulic fracturing on impedance and efficiency of thermal recovery from HDR reservoirs. Geomechanics for Energy and the Environment, 7, 10–25. doi:10.1016/j.gete.2016.02.001
  • Allis, R., Bromley, C., and Currie, S., 2009. Update on subsidence at the Wairakei–tauhara geothermal system. New Zealand Geothermics, 38 (1), 169–180. doi:10.1016/j.geothermics.2008.12.006.
  • Antonelli, R., et al., 1995. The geothermal Euganean field. A subsidence modelling approach. In Proceedings of the World Geothermal Congress, Florence, Italy, (pp. 1263–1268).
  • Araya, M.C. and Biggs, J., 2020. Episodic ground deformation associated with geothermal energy production at the Guayabo Caldera, Costa Rica. Journal of Volcanology and Geothermal Research, 407, 107110. doi:10.1016/j.jvolgeores.2020.107110
  • Aslan, G., Aydin, H., and Cakir, Z., 2022. Wide-area ground deformation monitoring in geothermal fields in western Turkey. Turkish Journal of Earth Sciences, 31 (3), 247–259. doi:10.55730/1300-0985.1771.
  • Bai, M. and Abousleiman, Y., 1997. Thermoporoelastic coupling with application to consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 21 (2), 121–132. doi:10.1002/(SICI)1096-9853(199702)21:2<121:AID-NAG861>3.0.CO;2-W.
  • Barelli, A., et al., 2010, April. Numerical modeling for the Larderello-Travale geothermal system, Italy. In Proceedings of the World Geothermal Congress, Bali, Indonesia (pp. 25–29).
  • Bixley, P.F., Clotworthy, A.W., and Mannington, W.I., 2009. Evolution of the wairakei geothermal reservoir during 50 years of production. Geothermics, 38 (1), 145–154. doi:10.1016/j.geothermics.2008.12.007.
  • Booker, J.R. and Savvidou, C., 1985. Consolidation around a point heat source. International Journal for Numerical and Analytical Methods in Geomechanics, 9 (2), 173–184. doi:10.1002/nag.1610090206.
  • Bromley, C., et al., 2013. Geothermal subsidence study at Wairakei–Tauhara, New Zealand. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166 (2), 211–223. doi:10.1680/geng.12.00040.
  • Chaudhry, A.A., et al., 2019. Consolidation around a point heat source (correction and verification). International Journal for Numerical and Analytical Methods in Geomechanics, 43 (18), 2743–2751. doi:10.1002/nag.2998.
  • Cui, X. and Wong, L.N.Y., 2021. A 3D thermo-hydro-mechanical coupling model for enhanced geothermal systems. International Journal of Rock Mechanics and Mining Sciences, 143, 104744. doi:10.1016/j.ijrmms.2021.104744
  • Detournay, E. and Cheng, A.H.D., 1993. Fundamentals of poroelasticity. In: Analysis and design methods. Pergamon, 113–171. doi:10.1016/B978-0-08-040615-2.50011-3.
  • Dobson, P.F., et al., 2003. Porosity, permeability, and fluid flow in the Yellowstone geothermal system, Wyoming. Journal of Volcanology and Geothermal Research, 123 (3–4), 313–324. doi:10.1016/S0377-0273(03)00039-8.
  • Evans, K.F., et al., 2012. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics, 41, 30–54. doi:10.1016/j.geothermics.2011.08.002
  • Gelet, R., Loret, B., and Khalili, N., 2012. A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity. Journal of Geophysical Research: Solid Earth, 117 (B7), doi:10.1029/2012JB009161.
  • Ghassemi, A. and Zhou, X., 2011. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems. Geothermics, 40 (1), 39–49. doi:10.1016/j.geothermics.2010.12.001.
  • Ghassemi, A., Tarasovs, S., and Cheng, A.D., 2005. Integral equation solution of heat extraction‐induced thermal stress in enhanced geothermal reservoirs. International Journal for Numerical and Analytical Methods in Geomechanics, 29 (8), 829–844. doi:10.1002/nag.440.
  • Gischig, V.S., et al., 2020. Hydraulic stimulation and fluid circulation experiments in underground laboratories: stepping up the scale towards engineered geothermal systems. Geomechanics for Energy and the Environment, 24, 100175. doi:10.1016/j.gete.2019.100175
  • Halldórsdóttir, S., et al., 2010. Temperature model and volumetric assessment of the Krafla geothermal field in N-Iceland. World Geothermal Congress, 25–29.
  • Häring, M.O., et al., 2008. Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 37 (5), 469–495. doi:10.1016/j.geothermics.2008.06.002.
  • Ho, I.H. and Dickson, M., 2017. Numerical modeling of heat production using geothermal energy for a snow-melting system. Geomechanics for Energy and the Environment, 10, 42–51. doi:10.1016/j.gete.2017.06.002
  • Huotari, T. and Kukkonen, I., 2004. Thermal expansion properties of rocks: literature survey and estimation of thermal expansion coefficient for Olkiluoto mica gneiss. Posiva Oy, Olkiluoto, Working Report, 4, 62.
  • Iranmanesh, M.A. and Pak, A., 2018. Extrinsically enriched element free Galerkin method for heat and fluid flow in deformable porous media involving weak and strong discontinuities. Computers and Geotechnics, 103, 179–192. doi:10.1016/j.compgeo.2018.07.013
  • Jeffrey, R.G., Zhang, X., and Bunger, A.P., February 2010. Hydraulic fracturing of naturally fractured reservoirs. In: Thirty-fifth workshop on geothermal reservoir engineering, Stanford, California: Stanford University, 1–3.
  • Jiang, F., et al., 2014. A three-dimensional transient model for EGS subsurface thermo-hydraulic process. Energy, 72, 300–310. doi:10.1016/j.energy.2014.05.038
  • Jiang, F., Luo, L., and Chen, J., 2013. A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. International Communications in Heat and Mass Transfer, 41, 57–62. doi:10.1016/j.icheatmasstransfer.2012.11.003
  • Khalili, N. and Selvadurai, A.P.S., 2003. A fully coupled constitutive model for thermo‐hydro‐mechanical analysis in elastic media with double porosity. Geophysical Research Letters, 30 (24), doi:10.1029/2003GL018838.
  • Kolditz, O., et al. 2016. Thermo-hydro-mechanical chemical processes in fractured porous media: modelling and benchmarkingVol. 25. Berlin: Springer International Publishing. 10.1007/978-3-319-29224-3
  • Kristensen, L., et al., 2016. Pre-drilling assessments of average porosity and permeability in the geothermal reservoirs of the Danish area. Geothermal Energy, 4 (1), 1–27. doi:10.1186/s40517-016-0048-6.
  • Li, P., et al., 2022. Fully coupled thermo-hydro-mechanical modeling and simulation of a fluid-saturated porous medium under local thermal non-equilibrium condition. International Journal of Heat and Mass Transfer, 195, 123195. doi:10.1016/j.ijheatmasstransfer.2022.123195
  • Li, W., et al., 2022. A fully coupled multidomain and multiphysics model considering stimulation patterns and thermal effects for evaluation of coalbed methane (CBM) extraction. Journal of Petroleum Science and Engineering, 214, 110506. doi:10.1016/j.petrol.2022.110506
  • Ljunggren, C., et al., 1985. Mechanical properties of granitic rocks from Gideå, Sweden (no. SKB-TR–85-06). Sweden: Swedish Nuclear Fuel and Waste Management Co.
  • Mossop, A. and Segall, P., 1999. Volume strain within the geysers geothermal field. Journal of Geophysical Research: Solid Earth, 104 (B12), 29113–29131. doi:10.1029/1999JB900284.
  • Noorollahi, Y. and Itoi, R., 2011. Production capacity estimation by reservoir numerical simulation of northwest (NW) sabalan geothermal field, Iran. Energy, 36 (7), 4552–4569. doi:10.1016/j.energy.2011.03.046.
  • Pandey, S.N. and Vishal, V., 2017. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems. Scientific Reports, 7 (1), 17057. doi:10.1038/s41598-017-14273-4.
  • Pandey, S.N., 2016. A three-dimensional coupled thermo-hydro model for enhanced geothermal systems. International Journal of Renewable Energy Research, 6, 1516–1523.
  • Pandey, S.N., Chaudhuri, A., and Kelkar, S., 2017. A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir. Geothermics, 65, 17–31. doi:10.1016/j.geothermics.2016.08.006
  • Pandey, S.N., Vishal, V., and Chaudhuri, A., 2018. Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: a review. Earth-Science Reviews, 185, 1157–1169. doi:10.1016/j.earscirev.2018.09.004
  • Peters, E., et al., 2018. Modelling of multi-lateral well geometries for geothermal applications. Advances in Geosciences, 45, 209–215. doi:10.5194/adgeo-45-209-2018
  • Rajeev, P. and Kodikara, J., 2016. Estimating apparent thermal diffusivity of soil using field temperature time series. Geomechanics and Geoengineering, 11 (1), 28–46. doi:10.1080/17486025.2015.1006266.
  • Saggu, R. and Chakraborty, T., 2015. Thermal analysis of energy piles in sand. Geomechanics and Geoengineering, 10 (1), 10–29. doi:10.1080/17486025.2014.923586.
  • Salemi, H., et al., 2018. Laboratory measurement of Biot’s coefficient and pore pressure influence on poroelastic rock behaviour. The APPEA Journal, 58 (1), 182–189. doi:10.1071/AJ17069.
  • Segall, P. and Fitzgerald, S.D., 1998. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics, 289 (1–3), 117–128. doi:10.1016/S0040-1951(97)00311-9.
  • Sharqawy, M.H., Lienhard, J.H., and Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 16 (1–3), 354–380. doi:10.5004/dwt.2010.1079.
  • Shi, Y., et al., 2019. Numerical investigation on heat extraction performance of a multilateral-well enhanced geothermal system with a discrete fracture network. Fuel, 244, 207–226. doi:10.1016/j.fuel.2019.01.164
  • Stowe, R.L., 1969. Strength and deformation properties of granite, basalt, limestone, and tuff at various loading rates. Vol. 61. Vicksburg, Mississippi: Waterways Experiment Station.
  • Strelbitskaya, S. and Radmehr, B., 2010. Geochemical characteristics of reservoir fluid from NW-Sabalan geothermal field, Iran. In Proceedings world geothermal congress, Bali, Indonesia, (pp. 25–29).
  • Templeton, J.D., et al., 2014. Abandoned petroleum wells as sustainable sources of geothermal energy. Energy, 70, 366–373. doi:10.1016/j.energy.2014.04.006
  • Vallier, B., et al., 2018. THM modeling of hydrothermal circulation at Rittershoffen geothermal site, France. Geothermal Energy, 6 (1), 1–26. doi:10.1186/s40517-018-0108-1.
  • Wang, K., et al., 2023. Constitutive and numerical modeling for the coupled thermal-hydro-mechanical processes in dual-porosity geothermal reservoir. Applied Thermal Engineering, 223, 120027. doi:10.1016/j.applthermaleng.2023.120027
  • Watanabe, N., et al., 2010. Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Computational Mechanics, 45 (4), 263–280. doi:10.1007/s00466-009-0445-9.
  • Zeng, Y.C., Su, Z., and Wu, N.Y., 2013. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at desert peak geothermal field. Energy, 56, 92–107. doi:10.1016/j.energy.2013.04.055
  • Zhang, Y., et al., 2023. Geodetic imaging of ground deformation and reservoir parameters at the Yangbajing geothermal field, Tibet, China. Geophysical Journal International, 234 (1), 379–394. doi:10.1093/gji/ggad018.
  • Zhou, X.X., Ghassemi, A., and Cheng, A.D., 2009. A three‐dimensional integral equation model for calculating poro‐and thermoelastic stresses induced by cold water injection into a geothermal reservoir. International Journal for Numerical and Analytical Methods in Geomechanics, 33 (14), 1613–1640. doi:10.1002/nag.780.
  • Zyvoloski, G.A., O’sullivan, M.J., and Krol, D.E., 1979. Finite difference techniques for modelling geothermal reservoirs. International Journal for Numerical and Analytical Methods in Geomechanics, 3 (4), 355–366. doi:10.1002/nag.1610030404.
  • Ducrocq, C., et al. (2020). Temporal variations in ground deformation caused by geothermal processes in the Hengill Area, SW Iceland, during 2009–2019. In Proceedings World Geothermal Congress (p. 1).
  • Gholizadeh Doonechaly, N., Abdel Azim, R.R., and Rahman, S.S., 2016. A study of permeability changes due to cold fluid circulation in fractured geothermal reservoirs. Groundwater, 54 (3), 325–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.