67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

At-rest lateral earth pressure in compacted silica sand

& ORCID Icon
Pages 405-419 | Received 14 Dec 2021, Accepted 16 Nov 2023, Published online: 10 Dec 2023

References

  • Alharthi, Y.M. 2018. Shaft Resistance of Driven Piles in Overconsolidated Cohesionless Soils. Ph.D. Thesis. Concordia Univ.
  • Alshibli, K.A., Godbold, D.L., and Hoffman, K., 2004. The Louisiana plane strain apparatus for soil testing. Geotechnical Testing Journal, 27 (4), 19103–19346. doi:10.1520/GTJ19103
  • ASTM, 2012a. Test methods for laboratory compaction characteristics of soil using standard effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698-12e2. West Conshohocken, PA: ASTM.
  • ASTM, 2012b. Test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM D1557-12e1. West Conshohocken, PA: ASTM.
  • Atkinson, J.H., 1993. An introduction to the mechanics of soils and foundations: through critical state soil mechanics. UK: McGraw-Hill Book Company Ltd.
  • Bolton, M.D., 1986. The strength and dilatancy of sands. Géotechnique, 36 (1), 65–78. doi:10.1680/geot.1986.36.1.65
  • Brooker, E.W. and Ireland, H.O., 1965. Earth pressures at-rest related to stress history. Canadian Geotechnical Journal, 2 (1), 1–15. doi:10.1139/t65-001
  • El-Emam, M., 2011. Experimental and numerical study of at-rest lateral earth pressure of overconsolidated sand. Advances in Civil Engineering, 2011 (524568), 1–12. doi:10.1155/2011/524568
  • Federico, A., Elia, G., and Germano, V., 2008. A short note on the earth pressure and mobilized angle of internal friction in one-dimensional compression of soils. Journal of GeoEngineering, 3 (1), 41–46.
  • Hanna, A.M., 2001. Determination of plane-strain shear strength of sand from the results of triaxial tests. Canadian Geotechnical Journal, 38 (6), 1231–1240. doi:10.1139/t01-064
  • Hanna, A.M. and Al-Romhein, R., 2008. At-rest earth pressure of overconsolidated cohesionless soil. Journal of Geotechnical and Geoenvironmental Engineering, 134 (3), 408–412. doi:10.1061/(ASCE)1090-0241(2008)134:3(408)
  • Hanna, A.M. and Diab, R., 2017. Passive earth pressure of normally and overconsolidated cohesionless soil in terms of critical-state soil mechanics parameters. International Journal of Geomechanics, 17 (1), 1–10. doi:10.1061/(ASCE)GM.1943-5622.0000683
  • Hanna, A.M. and Soliman-Saad, N., 2001. Effect of compaction duration on the induced stress levels in a laboratory prepared sand bed. Geotechnical Testing Journal, 24 (4), 430–438. doi:10.1520/GTJ11141J
  • Jaky, J., 1944. The coefficient of earth pressure at-rest. Journal of Social Hungarica Architecture Engineering, 78 (22), 355–358. in Hungarian.
  • Jaky, J. 1948. Pressure in Silos. In Vol. 1 of Proc., 2nd Int. Conf. Soil Mech. Found. Eng. 103–107. Rotterdam: Netherlands.
  • Kang, X., Xia, Z., and Chen, R., 2020. Measurement and correlations of K0 and Vs anisotropy of granular soils. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 173 (6), 546–561. doi:10.1680/jgeen.19.00162
  • Khosravi, M.H., Pipatpongsa, T., and Takemura, J., 2013. Experimental analysis of earth pressure against rigid retaining walls under translation mode. Géotechnique, 63 (12), 1020–1028. doi:10.1680/geot.12.P.021
  • Lee, J., et al., 2013. Assessment of K0 correlation to strength for granular materials. Soils & Foundations, 53 (4), 584–595. doi:10.1016/j.sandf.2013.06.009
  • Lings, M.L. and Dietz, M.S., 2004. An improved direct shear apparatus for sand. Géotechnique, 54 (4), 245–256. doi:10.1680/geot.2004.54.4.245
  • Mayne, P.W. and Kulhawy, F.H., 1982. K o - OCR relationships in soil. Journal of the Geotechnical Engineering Division, 108 (6), 851–872. doi:10.1061/AJGEB6.0001306
  • McGaw, R. 1967. Systematic packing from the standpoint of the primitive cell. CRREL Report 201, Hanover, NH: U.S. Army Cold Regions Research and Engineering Laboratory.
  • Mesri, G. and Hayat, T.M., 1993. The coefficient of earth pressure at-rest. Canadian Geotechnical Journal, 30 (4), 647–666. doi:10.1139/t93-056
  • Michalowski, R.L., 2005. Coefficient of earth pressure at-rest. Journal of Geotechnical and Geoenvironmental Engineering, 131 (11), 1429–1433. doi:10.1061/(ASCE)1090-0241(2005)131:11(1429)
  • Michalowski, R.L. and Park, N., 2004. Admissible stress fields and arching in piles of sand. Géotechnique, 54 (8), 529–538. doi:10.1680/geot.2004.54.8.529
  • Rosales-Garzón, S.E. and Hanna, A.M., 2021. Critical-state shear strength and pore pressure of granular materials. International Journal of Geomechanics, 21 (12), 04021237. doi:10.1061/(ASCE)GM.1943-5622.0002222
  • Rowe, P.W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” In Vol. 269 of Proc. R. Soc. Lond. Ser. Math. Phys. Sci., (1339): 500–527. 10.1098/rspa.1962.0193.
  • Sadrekarimi, A. and Olson, S.M., 2011. Critical state friction angle of sands. Géotechnique, 61 (9), 771–783. doi:10.1680/geot.9.P.090
  • Santamarina, J.C. and Cho, G.C., 2001. Determination of critical state parameters in sandy soils—simple procedure. Geotechnical Testing Journal, 24 (2), 185–192. doi:10.1520/GTJ11338J
  • Santana, T. and Candeias, M., 2015. K0 Measurement in a Sand Using Back Volume Change. Soils and Rocks, 38 (1), 3–8. doi:10.28927/SR.381003
  • Talesnick, M.L. and Bolton, M.D., 2021. Effect of structural boundaries and stress history on at-rest soil pressure of sand. International Journal of Physical Modelling in Geotechnics, 21 (4), 196–205. doi:10.1680/jphmg.19.00049
  • Taylor, D.W., 1948. Fundamentals of soil mechanics. New York: Wiley.
  • Uchida, S., Xie, X.-G., and Leung, Y.F., 2016. Role of critical state framework in understanding geomechanical behavior of methane hydrate-bearing sediments. Journal of Geophysical Research: Solid Earth, 121 (8), 5580–5595. doi:10.1002/2016JB012967
  • Ueng, T.-S. 2020. “Lateral earth pressure at rest in response to pore water pressure increases in saturated sand.” In Proc., 16th Asian Reg. Conf. Soil Mech. and Found. Eng. ARC 2019. Taipei: Taiwan.
  • Wang, X.-S., et al., 2009. Investigations on the mechanical properties of conducting polymer coating-substrate structures and their influencing factors. International Journal of Molecular Sciences, 10 (12), 5257–5284. doi:10.3390/ijms10125257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.