583
Views
10
CrossRef citations to date
0
Altmetric
Articles

An efficient Bayesian method for estimating runout distance of region-specific landslides using sparse data

, &
Pages 140-153 | Received 28 Feb 2021, Accepted 28 May 2021, Published online: 22 Jul 2021

References

  • Aladejare, A. E., V. O. Akeju, and Y. Wang. 2020. “Probabilistic Characterisation of Uniaxial Compressive Strength of Rock Using Test Results from Multiple Types of Punch Tests.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1–12.
  • Althuwaynee, O. F., O. Asikoglu, and E. Eris. 2018. “Threshold Contour Production of Rainfall Intensity that Induces Landslides in Susceptible Regions of Northern Turkey.” Landslides 15 (8): 1541–1560.
  • Andrieu, Christophe, Nando De Freitas, Arnaud Doucet, and Michael I. Jordan. 2003. “An Introduction to MCMC for Machine Learning.” Machine Learning 50 (1-2): 5–43. doi:https://doi.org/10.1023/A:1020281327116.
  • Ang, Alfredo H.S., and Wilson H. Tang. 2007. Probability Concepts in Engineering Planning: Emphasis on Applications to Civil and Environmental Engineering. New York: Wiley.
  • Bishop, Christopher M, and Michael Tipping. 2013. “Variational Relevance Vector Machines.” Paper presented at the Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, June 30.
  • Blais-Stevens, A., P. Behnia, M. Kremer, A. Page, R. Kung, and G. Bonham-Carter. 2012. “Landslide Susceptibility Mapping of the Sea to Sky Transportation Corridor, British Columbia, Canada: Comparison of Two Methods.” Bulletin of Engineering Geology and the Environment 71 (3): 447–466. doi:https://doi.org/10.1007/s10064-012-0421-z.
  • Bozorgzadeh, N., and R. J. Bathurst. 2020. “Hierarchical Bayesian Approaches to Statistical Modelling of Geotechnical Data.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1–18.
  • Cascini, L., S. Cuomo, A. Di Mauro, M. Di Natale, S. Di Nocera, and F. Matano. 2021. “Multidisciplinary Analysis of Combined Flow-Like Mass Movements in a Catchment of Southern Italy.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15 (1): 41–58.
  • Chau, K. T., Y. L. Sze, M. K. Fung, W. Y. Wong, E. L. Fong, and L. C. P. Chan. 2004. “Landslide Hazard Analysis for Hong Kong Using Landslide Inventory and GIS.” Computers & Geosciences 30 (4): 429–443. doi:https://doi.org/10.1016/j.cageo.2003.08.013.
  • Corominas, Jordi. 1996. “The Angle of Reach as a Mobility Index for Small and Large Landslides.” Canadian Geotechnical Journal 33 (2): 260–271. doi:https://doi.org/10.1139/t96-005.
  • Dilley, Maxx, Robert S. Chen, Uwe Deichmann, Arthur L. Lerner-Lam, and Margaret Arnold. 2005. Natural Disaster Hotspots: A Global Risk Analysis. Washington, DC: World Bank.
  • Fannin, R. J., and M. P. Wise. 2001. “An Empirical-Statistical Model for Debris Flow Travel Distance.” Canadian Geotechnical Journal 38 (5): 982–994. doi:https://doi.org/10.1139/t01-030.
  • Finlay, P. J., G. R. Mostyn, and R. Fell. 1999. “Landslide Risk Assessment: Prediction of Travel Distance.” Canadian Geotechnical Journal 36 (3): 556–562. doi:https://doi.org/10.1139/t99-012.
  • Guo, Deping, Masanori Hamada, Chuan He, Yufeng Wang, and Yulin Zou. 2014. “An Empirical Model for Landslide Travel Distance Prediction in Wenchuan Earthquake Area.” Landslides 11 (2): 281–291. doi:https://doi.org/10.1007/s10346-013-0444-y.
  • Haque, Ubydul, Philipp Blum, Paula F. da Silva, Peter Andersen, Jürgen Pilz, Sergey R. Chalov, Jean-Philippe Malet, et al. 2016. “Fatal Landslides in Europe.” Landslides 13 (6): 1545–1554. doi:https://doi.org/10.1007/s10346-016-0689-3.
  • Ho, K. K. S., and F. W. Y. Ko. 2009. “Application of Quantified Risk Analysis in Landslide Risk Management Practice: Hong Kong Experience.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 3 (3): 134–146. doi:https://doi.org/10.1080/17499510902873074.
  • Hughes, K. E., M. Geertsema, E. Kwoll, M. N. Koppes, N. J. Roberts, J. J. Clague, and S. Rohland. 2021. “Previously Undiscovered Landslide Deposits in Harrison Lake, British Columbia, Canada.” Landslides 18: 529–538.
  • Hungr, Oldrich. 1995. “A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows, and Avalanches.” Canadian Geotechnical Journal 32 (4): 610–623. doi:https://doi.org/10.1139/t95-063.
  • Hungr, Oldrich, and Scott McDougall. 2009. “Two Numerical Models for Landslide Dynamic Analysis.” Computers & Geosciences 35 (5): 978–992. doi:https://doi.org/10.1016/j.cageo.2007.12.003.
  • Legros, François. 2002. “The Mobility of Long-Runout Landslides.” Engineering Geology 63 (3-4): 301–331. doi:https://doi.org/10.1016/S0013-7952(01)00090-4.
  • Li, X. Z., and J. M. Kong. 2010. “Runout Distance Estimation of Landslides Triggered by ‘5·12’ Wenchuan Earthquake.” Journal of Sichuan University (Engineering Science Edition) 42 (5): 243–249.
  • Liu, X., and Y. Wang. 2021. “Probabilistic Simulation of Entire Process of Rainfall-Induced Landslides Using Random Finite Element and Material Point Methods with Hydro-Mechanical Coupling.” Computers and Geotechnics 132: 103989. doi:https://doi.org/10.1016/j.compgeo.2020.103989.
  • Liu, X., Y. Wang, and D. Li. 2020. “Numerical Simulation of the 1995 Rainfall-Induced Fei Tsui Road Landslide in Hong Kong: New Insights from Hydro-Mechanically Coupled Material Point Method.” Landslides 17: 2755–2775.
  • Lorente, Adrián, Santiago Beguería, James C. Bathurst, and José M. García-Ruiz. 2003. “Debris Flow Characteristics and Relationships in the Central Spanish Pyrenees.” Natural Hazards and Earth System Sciences 3 (6): 683–691. doi:https://doi.org/10.5194/nhess-3-683-2003.
  • Mathworks. 2021. “MATLAB: The Language of Technical Computing.” Accessed February 28, 2021. http://www.mathworks.com/products/matlab/.
  • McDougall, S. 2017. “2014 Canadian Geotechnical Colloquium: Landslide Runout Analysis—Current Practice and Challenges.” Canadian Geotechnical Journal 54 (5): 605–620.
  • McDougall, S., and O. Hungr. 2003. “Objectives for the Development of an Integrated Three-Dimensional Continuum Model for the Analysis of Landslide Runout.” Paper presented at the Proc. 3rd International Conference on Debris Flows Hazards Mitigation: Mechanics, Prediction and Assessment, Davos, Switzerland, September 10–12. Rotterdam: Millpress.
  • NBS (National Bureau of Statistics of China). 2016. 2016 China Statistical Yearbook (2000–2015). Beijing: Chinese Statistics Press.
  • Pastor, M., B. Haddad, G. Sorbino, S. Cuomo, and V. Drempetic. 2009. “A Depth-Integrated, Coupled SPH Model for Flow-Like Landslides and Related Phenomena.” International Journal for Numerical and Analytical Methods in Geomechanics 33 (2): 143–172. doi:https://doi.org/10.1002/nag.705.
  • Peruzzetto, M., A. Mangeney, G. Grandjean, C. Levy, Y. Thiery, J. Rohmer, and A. Lucas. 2020. “Operational Estimation of Landslide Runout: Comparison of Empirical and Numerical Methods.” Geosciences 10 (11): 424.
  • Qarinur, Muhammad. 2015. “Landslide Runout Distance Prediction Based on Mechanism and Cause of Soil or Rock Mass Movement.” Journal of the Civil Engineering Forum 1 (1). doi:https://doi.org/10.22146/jcef.22728.
  • Rickenmann, Dieter. 1999. “Empirical Relationships for Debris Flows.” Natural Hazards 19 (1): 47–77. doi:https://doi.org/10.1023/A:1008064220727.
  • Sivia, Devinderjit, and John Skilling. 2006. Data Analysis: A Bayesian Tutorial. Oxford: OUP.
  • Wang, Y., and T. Zhao. 2017. “Statistical Interpretation of Soil Property Profiles from Sparse Data Using Bayesian Compressive Sampling.” Géotechnique 67 (6): 523–536. doi:https://doi.org/10.1680/jgeot.16.P.143.
  • Xu, Q., H. Li, Y. He, F. Liu, and D. Peng. 2017. “Comparison of Data-Driven Models of Loess Landslide Runout Distance Estimation.” Bulletin of Engineering Geology and the Environment 78 (2): 1281–1294. doi:https://doi.org/10.1007/s10064-017-1176-3.
  • Xu, J., L. Zhang, J. Li, Z. Cao, H. Yang, and X. Chen. 2021. “Probabilistic Estimation of Variogram Parameters of Geotechnical Properties with a Trend Based on Bayesian Inference Using Markov Chain Monte Carlo Simulation.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15 (2): 83–97.
  • Zhao, T., Y. Hu, and Y. Wang. 2018. “Statistical Interpretation of Spatially Varying 2D Geo-Data from Sparse Measurements Using Bayesian Compressive Sampling.” Engineering Geology 246: 162–175. doi:https://doi.org/10.1016/j.enggeo.2018.09.022.
  • Zhao, T., and Y. Wang. 2021. “Statistical Interpolation of Spatially Varying but Sparsely Measured 3D Geo-Data Using Compressive Sensing and Variational Bayesian Inference.” Mathematical Geosciences. doi:https://doi.org/10.1007/s11004-020-09913-x.
  • Zhao, T., L. Xu, and Y. Wang. 2020. “Fast non-Parametric Simulation of 2D Multi-Layer Cone Penetration Test (CPT) Data Without Pre-Stratification Using Markov Chain Monte Carlo Simulation.” Engineering Geology 273. doi:https://doi.org/10.1016/j.enggeo.2020.105670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.