352
Views
1
CrossRef citations to date
0
Altmetric
Articles

Worst-case effect in bearing capacity of spread foundations considering safety factors and anisotropy in soil spatial variability

ORCID Icon, ORCID Icon & ORCID Icon
Pages 330-345 | Received 28 Jun 2021, Accepted 20 Feb 2022, Published online: 10 Mar 2022

References

  • Ali, A., J. Huang, A. V. Lyamin, S. W. Sloan, D. V. Griffiths, M. J. Cassidy, and J. H. Li. 2014. “Simplified Quantitative Risk Assessment of Rainfall-Induced Landslides Modelled by Infinite Slopes.” Engineering Geology 179: 102–116. doi:10.1016/j.enggeo.2014.06.024.
  • Ali, A., A. V. Lyamin, J. Huang, S. W. Sloan, and M. J. Cassidy. 2016. “Effect of Spatial Correlation Length on the Bearing Capacity of an Eccentrically Loaded Strip Footing.” In Proceedings of the 6th Asian-Pacific Symposium on Structural Reliability and its Applications, edited by H. Huang, J. Li, J. Zhang, and J. Chen, 312–317. Tongji University, Shanghai.
  • Bagińska, I., M. Kawa, and W. Janecki. 2018. Estimation of Spatial Variability Properties of Mine Waste Dump using CPTu Results - Case Study. Proceedings of the 4th International Symposium on Cone Penetration Testing (CPT'18), Delft, The Netherlands, 21-22 June 2018; eds. Michael A. Hicks, Federico Pisanò, Joek Peuchen. Leiden: CRC Press/Balkema, cop. 2018. s. 109-115.
  • Cami, B., S. Javankhoshdel, K. K. Phoon, and J. Ching. 2020. “Scale of Fluctuation for Spatially Varying Soils: Estimation Methods and Values.” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 6 (4): 03120002. doi:10.1061/AJRUA6.0001083.
  • Ching, J., K. K. Phoon, and S. P. Sung. 2017. “Worst Case Scale of Fluctuation in Basal Heave Analysis Involving Spatially Variable Clays.” Structural Safety 68: 28–42. doi:10.1016/j.strusafe.2017.05.008.
  • Ching, J., T. J. Wu, A. W. Stuedlein, and T. Bong. 2018. “Estimating Horizontal Scale of Fluctuation with Limited CPT Soundings.” Geoscience Frontiers 9 (6): 1597–1608. doi:10.1016/j.gsf.2017.11.008.
  • Chwała, M. 2019. “Undrained Bearing Capacity of Spatially Random Soil for Rectangular Footings.” Soils and Foundations 59 (5): 1508–1521. doi:10.1016/j.sandf.2019.07.005.
  • EN 1990. 2002. Eurocode - Basis of Structural Design. European Committee for Standardization; 2002.
  • Fenton, G. A., and D. V. Griffiths. 2003. “Bearing-capacity Prediction of Spatially Random c φ Soils.” Canadian Geotechnical Journal 40 (1): 54–65. doi:10.1139/t02-086.
  • Griffiths, D. V., and G. A. Fenton. 1993. “Seepage Beneath Water Retaining Structures Founded on Spatially Random Soil.” Géotechnique 43 (4): 577–587. doi:10.1680/geot.1993.43.4.577.
  • Griffiths, D. V., and G. A. Fenton. 2001. “Bearing Capacity of Spatially Random Soil: The Undrained Clay Prandtl Problem Revisited.” Géotechnique 51 (4): 351–359. doi:10.1680/geot.2001.51.4.351.
  • Huang, J., A. V. Lyamin, D. V. Griffiths, S. W. Sloan, K. Krabbenhoft, and G. A. Fenton. 2013. Undrained Bearing Capacity of Spatially Random Clays by Finite Elements and Limit Analysis. Proceedings of the 18th ICSMGE, Paris, 731-734.
  • ISO 2394:2000. 2015. General principles on reliability for structures.
  • Jaksa, M. B., W. S. Kaggawa, and P. I. Brooker. 1999. Experimental Evaluation of the Scale of Fluctuation of a Stiff Clay, ICASP8, Int. Conf. on Applications of Statistics and Probability in Civil Engineering, At Sydney, Vol. 1, 415–422.
  • Jha, S. K., and J. Ching. 2013. “Simplified Reliability Method for Spatially Variable Undrained Engineered Slopes.” Soils and Foundations 53 (5): 708–719. doi:10.1016/j.sandf.2013.08.008.
  • Kawa, M., and W. Puła. 2020. “3D Bearing Capacity Probabilistic Analyses of Footings on Spatially Variable c–φ Soil.” Acta Geotechnica 15: 1453–1466. doi:10.1007/s11440-019-00853-3.
  • Kawa, M., W. Puła, and A. Truty. 2021. “Probabilistic Analysis of the Diaphragm Wall Using the Hardening Soil-Small (HSs) Model.” Engineering Structures 232: 111869. doi:10.1016/j.engstruct.2021.111869.
  • Lee, I. K., W. White, and O. G. Ingles. 1983. Geotechnical Engineering. Pitman Publishing Inc., Massachusetts, 62.
  • Lloret-Cabot, M., G. A. Fenton, and M. A. Hicks. 2014. “On the Estimation of Scale of Fluctuation in Geostatistics.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 8 (2): 129–140. doi:10.1080/17499518.2013.871189.
  • Luo, Z., Y. Li, S. Zhou, and H. Di. 2018. “Effects of Vertical Spatial Variability on Supported Excavations in Sands Considering Multiple Geotechnical and Structural Failure Modes.” Computers and Geotechnics 95: 16–29. doi:10.1016/j.compgeo.2017.11.017.
  • Phoon, K. K., and F. H. Kulhawy. 1999. “Characterisation of Geotechnical Variability.” Canadian Geotechnical Journal 36 (4): 612–624. doi:10.1139/t99-038.
  • Pieczyńska-Kozłowska, J. M., W. Puła, D. V. Griffiths, and G. A. Fenton. 2015. “Influence of Embedment, Self-Weight and Anisotropy on Bearing Capacity Reliability Using the Random Finite Element Method.” Computers and Geotechnics 67: 229–238. doi:10.1016/j.compgeo.2015.02.013.
  • Pieczyńska-Kozłowska, J. M., W. Puła, and G. Vessia. 2017. A collection of fluctuation scale values and autocorrelation functions of fine deposits in Emilia Romagna plain, Italy. In Geo-Risk 2017 (pp. 290-299). doi:10.1061/9780784480717.027.
  • Pieczyńska, J. 2012. Random Finite Element Method in Analysis of a Bearing Capacity of a Shallow Foundation. Diss. PhD Thesis, Wrocław University of Technology. (in Polish).
  • Pieczyńska, J., W. Puła, D. V. Griffiths, and G. A. Fenton. 2011. Probabilistic Characteristics of Strip Footing Bearing Capacity Evaluated by Random Finite Element Method. In: Proc. 11th Int. Conf. on Appl. of Statistics and Probability in Soil and Struct. Eng. (ICASP) Zurich 2011: Paper No. 10321 (CD-ROM).
  • Puła, W., and M. Chwała. 2018. “Random Bearing Capacity Evaluation of Shallow Foundations for Asymmetrical Failure Mechanisms with Spatial Averaging and Inclusion of Soil Self-Weight.” Computers and Geotechnics 101: 176–195. doi:10.1016/j.compgeo.2018.05.002.
  • Puła, W, and D.V Griffiths. 2021. “Transformations of spatial correlation lengths in random fields.” Computers and Geotechnics 136: 104151. doi:10.1016/j.compgeo.2021.104151.
  • Puła, W., and Ł Zaskórski. 2015. “Estimation of the Probability Distribution of the Random Bearing Capacity of Cohesionless Soil Using the Random Finite Element Method.” Structure and Infrastructure Engineering 11 (5): 707–720. doi:10.1080/15732479.2014.903501.
  • Rackwitz, R. 2000. “Reviewing Probabilistic Soils Modelling.” Computers and Geotechnics 26 (3-4): 199–223. doi:10.1016/S0266-352X(99)00039-7.
  • Simões, J. T., L. C. Neves, A. N. Antão, and N. M. Guerra. 2014. “Probabilistic Analysis of Bearing Capacity of Shallow Foundations Using Three-Dimensional Limit Analyses.” International Journal of Computational Methods 11 (02): 1342008. doi:10.1142/S0219876213420085.
  • Vanmarcke, E. H. 1983. Random fields: Analysis and Synthesis. Cambridge: MIT Press.
  • Yi, J. T., L. Y. Huang, D. Q. Li, and Y. Liu. 2020. “A Large-Deformation Random Finite-Element Study: Failure Mechanism and Bearing Capacity of Spudcan in a Spatially Varying Clayey Seabed.” Géotechnique 70 (5): 392–405. doi:10.1680/jgeot.18.P.171.
  • Zhang, W., Y. Pan, and F. Bransby. 2020. “Scale Effects During Cone Penetration in Spatially Variable Clays.” Géotechnique, 1–13. doi:10.1680/jgeot.20.P.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.