243
Views
1
CrossRef citations to date
0
Altmetric
Articles

Data-driven approximation of geotechnical dynamics to an equivalent single-degree-of-freedom vibration system based on dynamic mode decomposition

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 77-97 | Received 01 Sep 2022, Accepted 21 Feb 2023, Published online: 06 Mar 2023

References

  • Al-Bittar, T., A.-H. Soubra, and J. Thajeel. 2018. “Kriging-based Reliability Analysis of Strip Footings Resting on Spatially Varying Soils.” Journal of Geotechnical and Geoenvironmental Engineering 144 (10): 04018071. doi:10.1061/(ASCE)GT.1943-5606.0001958.
  • Arai, Y., S. Muramatsu, H. Yasuda, K. Hayasaka, and Y. Otake. 2021. “Sparse-Coded Dynamic Mode Decomposition on Graph for Prediction of River Water Level Distribution.” 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada. https://ieeexplore.ieee.org/document/9414533
  • Baghbani, A., T. Choudhury, S. Costa, and J. Reiner. 2022. “Application of Artificial Intelligence in Geotechnical Engineering: A State-of-the-art Review.” Earth-Science Reviews 228: 103991. doi:10.1016/j.earscirev.2022.103991.
  • Brunton, S. L., and J. Kutz. 2019. Data-driven Science and Engineering: Machine Learning, Dynamical Systems and Control. Cambridge University Press. https://www.cambridge.org/core/books/datadriven-science-andengineering/77D52B171B60A496EAFE4DB662ADC36E.
  • Chen, G., M. Beer, and Y. Liu. 2022. “Modeling Response Spectrum Compatible Pulse-like Ground Motion.” Mechanical Systems and Signal Processing 177: 109177. doi:10.1016/j.ymssp.2022.109177.
  • Ching, J., and K. K. Phoon. 2019. “Constructing Site-specific Multivariate Probability Distribution Model Using Bayesian Machine Learning.” Journal of Engineering Mechanics 145 (1): 04018126. doi:10.1061/(ASCE)EM.1943-7889.0001537.
  • Ching, J., and K. K. Phoon. 2020. “Constructing a Site-specific Multivariate Probability Distribution Using Sparse, Incomplete, and Spatially Variable (music-x) Data.” Journal of Engineering Mechanics146 (7): 04020061. doi:10.1061/(ASCE)EM.1943-7889.0001779.
  • Ching, J., K.-K. Phoon, and C.-T. Wu. 2022. “Data-centric Quasi-site-specific Prediction for Compressibility of Clays.” Canadian Geotechnical Journal 59 (12): 2033–2049. doi:10.1139/cgj-2021-0658.
  • Ching, J., S. Wu, and K.-K. Phoon. 2021. “Constructing Quasi-site-specific Multivariate Probability Distribution Using Hierarchical Bayesian Model.” Journal of Engineering Mechanics 147 (10): 04021069. doi:10.1061/(ASCE)EM.1943-7889.0001964.
  • Christiansen, N. H., J. B. Høgsberg, and O. Winther. 2011. “Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems.” Proceedings of the 24th Nordic Seminar on Computational Mechanics. https://backend.orbit.dtu.dk/ws/portalfiles/portal/6282759/prod21321948946741.NSCM- 24_main%5B1%5D.pdf.
  • Dabaghi, M., and A. Der Kiureghian. 2017. “Stochastic Model for Simulation of Near-fault Ground Motions.” Earthquake Engineering & Structural Dynamics 46 (6): 963–984. doi:10.1002/eqe.v46.6.
  • Dang, Z., Y. Lv, Y. Li, and G. Wei. 2018. “Improved Dynamic Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing.” Sensors 18 (6): 1972. doi:10.3390/s18061972.
  • El Haj, A.-K., A.-H. Soubra, and T. Al-Bittar. 2019. “Probabilistic Analysis of Strip Footings Based on Enhanced Kriging Metamodeling.” International Journal for Numerical and Analytical Methods in Geomechanics 43 (17): 2667–2686. doi:10.1002/nag.v43.17.
  • Hemati, M. S., M. O. Williams, and C. W. Rowley. 2014. “Dynamic Mode Decomposition for Large and Streaming Datasets.” Physics of Fluids 26 (11): 111701. doi:10.1063/1.4901016.
  • Huang, C. S., S. L. Hung, C. M. Wen, and T. T. Tu. 2003. “A Neural Network Approach for Structural Identification and Diagnosis of a Building From Seismic Response Data.” Earthquake Engineering & Structural Dynamics 32 (2): 187–206. doi:10.1002/(ISSN)1096-9845.
  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. -C. Yen, C. C. Tung, and H. H. Liu. 1998. “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis.” Proceedings: Mathematical, Physical and Engineering Sciences 454 (1971): 903–995. https://www.jstor.org/stable/53161.
  • Institute, P. W. R. 1982. “Experimental Study on Ground Deformation Characteristics (in japanese).” Technical memorandum of Public Works Research Institute, No. 157–2.
  • Itoi, T., P. Stafford, M. Kaneko, and I. Sata. 2014. “Stochastic of Ground Motion Time History for Crustal Earthquake.” 14th National Symposium on Earthquake Engineering. (in Japanese)
  • Jong, S., D. Ong, and E. Oh. 2021. “State-of-the-art Review of Geotechnical-driven Artificial Intelligence Techniques in Underground Soil-structure Interaction.” Tunnelling and Underground Space Technology113: 103946. doi:10.1016/j.tust.2021.103946.
  • Kaneko, Y., S. Muramatsu, H. Yasuda, K. Hayasaka, Y. Otake, S. Ono, and M. Yukawa. 2019. “Convolutional-Sparse-Coded Dynamic Mode Decomposition and Its Application to River State Estimation.” ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK. All Open Access, Green Open Access. https://ieeexplore.ieee.org/document/8683848.
  • Kang, F., S. Han, R. Salgado, and J. Li. 2015. “System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression with Latin Hypercube Sampling.” Computers and Geotechnics 63: 13–25. doi:10.1016/j.compgeo.2014.08.010.
  • Koopman, B. O. 1931. “Hamiltonian Systems and Transformation in Hilbert Space.” Proceedings of the National Academy of Sciences 17 (5): 315–318. doi:10.1073/pnas.17.5.315.
  • Kutz, J. N., S. L. Brunton, B. W. Brunton, and J. L. Proctor. 2016. Dynamic Mode Decomposition. Society for Industrial and Applied Mathematics. https://epubs.siam.org/doi/book/10.1137/1.9781611974508.
  • Kutz, J. N., J. L. Proctor, and S. L. Brunton. 2018. “Applied Koopman Theory for Partial Differential Equations and Data-driven Modeling of Spatio-temporal Systems.” Complexity 2018: 6010634. doi:10.1155/2018/6010634.
  • Lagaros, N. D., and M. Papadrakakis. 2012. “Neural Network Based Prediction Schemes of the Non-linear Seismic Response of 3d Buildings.” Advances in Engineering Software 44 (1): 92–115. doi:10.1016/j.advengsoft.2011.05.033.
  • Lv, Y., R. Yuan, and G. Song. 2016. “Multivariate Empirical Mode Decomposition and Its Application to Fault Diagnosis of Rolling Bearing.” Mechanical Systems and Signal Processing 81: 219–234. doi:10.1016/j.ymssp.2016.03.010.
  • Ma, Z., and G. Mei. 2021. “Deep Learning for Geological Hazards Analysis: Data, Models, Applications, and Opportunities.” Earth-Science Reviews 223: 103858. doi:10.1016/j.earscirev.2021.103858.
  • Morgenroth, J., U. T. Khan, and M. A. Perras. 2019. “An Overview of Opportunities for Machine Learning Methods in Underground Rock Engineering Design.” Geosciences 9 (12): 504. doi:10.3390/geosciences9120504.
  • Otake, Y., Y. Higo, K. Shigeno, and S. Watanabe. 2019a. “Validation of Numerical Analysis Based on Mode Decomposition.” Proceedings 7th International Symposium on Geotechnical Safety and Risk (ISGSR 2019), Taipei, Taiwan, 679–684. http://rpsonline.com.sg/proceedings/9789811127250/html/IS7-9.xml.
  • Otake, Y., and Y. Honjo. 2012. “Reliability based Design on Long Irrigation Channel Considering the Soil Investigation Locations.” Number 225 GSP, 2836–2845.
  • Otake, Y., and Y. Honjo. 2022. “Challenges in Geotechnical Design Revealed by Reliability Assessment: Review and Future Perspectives.” Soils and Foundations 62 (3): 101129. doi:10.1016/j.sandf.2022.101129.
  • Otake, Y., S. Kodama, and S. Watanabe. 2019b. “Improvement in the Information-oriented Construction of Temporary Soil-retaining Walls Using Sparse Modeling.” Underground Space 4 (3): 210–224. doi:10.1016/j.undsp.2018.12.004.
  • Otake, Y., K. Shigeno, Y. Higo, and S. Muramatsu. 2022. “Practical Dynamic Reliability Analysis with Spatiotemporal Features in Geotechnical Engineering.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 16 (4): 662–677. doi:10.1080/17499518.2021.1971250.
  • Phoon, K.-K., J. Ching, and T. Shuku. 2022. “Challenges in Data-driven Site Characterization.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 16 (1): 114–126. doi:10.1080/17499518.2021.1896005.
  • Phoon, K.-K., and W. Zhang. 2022. “Future of Machine Learning in Geotechnics.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. doi:10.1080/17499518.2021.1896005.
  • Proctor, J. L., S. L. Brunton, and J. N. Kutz. 2018. “Generalizing Koopman Theory to Allow for Inputs and Control.” SIAM Journal on Applied Dynamical Systems 17 (1): 909–930. doi:10.1137/16M1062296.
  • Rezaeian, S., and A. D. Kiureghian. 2008. “A Stochastic Ground Motion Model with Separable Temporal and Spectral Nonstationarities.” Earthquake Engineering and Structural Dynamics 37-13: 1565–1584. doi:10.1002/eqe.v37:13.
  • Rezaeian, S., and A. D. Kiureghian. 2010. “Simulation of Synthetic Ground Motions for Specified Earthquake and Site Characteristics.” Earthquake Engineering and Structural Dynamics 39-10: 1155–1180. doi:10.1002/eqe.997.
  • SCHMID, P. J. 2010. “Dynamic Mode Decomposition of Numerical and Experimental Data.” Journal of Fluid Mechanics 656: 5–28. doi:10.1017/S0022112010001217.
  • SCHMID, P. J. 2011. “Applications of the Dynamic Mode Decomposition.” Theoretical and Computational Fluid Dynamics 25: 249–259. doi:10.1007/s00162-010-0203-9.
  • Schnabel, P., J. Lysmer, and H. Seed. 1972. “Shake – A Computer Program for Earthquake Analysis of Horizontally Layered Sites.” Earthquake Engineering Research Center, Report No. EERC 72-12, University of California, Berkeley, 257–265.
  • Shahin, M. A. 2012. “Artificial Intelligence in Geotechnical Engineering: Applications, Modeling Aspects, and Future Directions.” Metaheuristics in Water, Geotechnical and Transport Engineering, 169–194. UK: Elsevier Science.
  • Sun, S.-B., Y.-Y. He, S.-D. Zhou, and Z.-J. Yue. 2017. “A Data-driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.” Sensors 17 (12): 2888. doi:10.3390/s17122888.
  • Syed, F. I., A. AlShamsi, A. K. Dahaghi, and S. Neghabhan. 2022. “Application of Ml & Ai to Model Petrophysical and Geomechanical Properties of Shale Reservoirs – a Systematic Literature Review.” Petroleum 8 (2): 158–166. doi:10.1016/j.petlm.2020.12.001.
  • van den Eijnden, A. P., T. Schweckendiek, and M. A. Hicks. 2022. “Metamodelling for Geotechnical Reliability Analysis with Noisy and Incomplete Models.” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 16 (3): 518–535. doi:10.1080/17499518.2021.1952611.
  • Walter, R., and O. William. 1943. “Description of Stress-Strain Curves by Three Parameters.” National advisory committee for aeronautics.
  • Wu, S., J. Ching, and K.-K. Phoon. 2022. “Quasi-site-specific Soil Property Prediction Using a Cluster-based Hierarchical Bayesian Model.” Structural Safety 99: 102253. doi:10.1016/j.strusafe.2022.102253.
  • Wu, R.-T., and M. R. Jahanshahi. 2019. “Deep Convolutional Neural Network for Structural Dynamic Response Estimation and System Identification.” Journal of Engineering Mechanics 145 (1): 04018125. doi:10.1061/(ASCE)EM.1943-7889.0001556.
  • Xie, Y., M. E. Sichani, J. E. Padgett, and R. DesRoches. 2020. “The Promise of Implementing Machine Learning in Earthquake Engineering: A State-of-the-art Review.” Earthquake Spectra 36 (4): 1769–1801. doi:10.1177/8755293020919419.
  • Ying, W., W. Chong, L. Hui, and Z. Renda. 2009. “Artificial Neural Network Prediction for Seismic Response of Bridge Structure.” 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China; Vol. 2, 503–506. https://ieeexplore.ieee.org/document/5375889.
  • Yoshida, N. 2021. Seismic Ground Response Analysis. Springer. https://link.springer.com/book/10.1007/978-94-017-9460-2.
  • Yoshida, I., Y. Tomizawa, and Y. Otake. 2021. “Estimation of Trend and Random Components of Conditional Random Field Using Gaussian Process Regression.” Computers and Geotechnics 136: 104179. doi:10.1016/j.compgeo.2021.104179.
  • Zhang, W., H. Li, Y. Li, H. Liu, Y. Chen, and X. Ding. 2021. “Application of Deep Learning Algorithms in Geotechnical Engineering: a Short Critical Review.” Artificial Intelligence Review 54: 5633–5673. doi:10.1007/s10462-021-09967-1.
  • Zhang, R., Y. Liu, and H. Sun. 2020. “Physics-guided Convolutional Neural Network (phycnn) for Data-driven Seismic Response Modeling.” Engineering Structures 215: 110704. doi:10.1016/j.engstruct.2020.110704.
  • Zhang, W., and K.-K. Phoon. 2022. “Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering.” Journal of Rock Mechanics and Geotechnical Engineering 14 (3): 671–673. doi:10.1016/j.jrmge.2022.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.