143
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Optimizing performance attributes of electric power systems using chaotic salp swarm optimizer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 165-175 | Received 30 Jun 2019, Accepted 03 Oct 2019, Published online: 22 Oct 2019

References

  • Abdo, M., Kamel, S., Ebeed, M., Yu, J., & Jurado, F. (2018). Solving non-smooth optimal power flow problems using a developed grey wolf optimizer. Energies, 11(7), 1692.
  • Adarsh, B. R., Raghunathan, T., Jayabarathi, T., & Yang, X. (2016). Economic dispatch using chaotic bat algorithm. Energy, 96, 666–675.
  • Attia, A. F., Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343.
  • Bentouati, B., Chettih, S., & El-Sehiemy, R. A. (2017). A chaotic krill herd algorithm for optimal solution of the economic dispatch problem. International Journal of Engineering Research in Africa, 31, 155–168.
  • Bhattacharya, A., & Chattopadhyay, P. K. (2011). Application of biogeography-based optimisation to solve different optimal power flow problems. IET Generation, Transmission, & Distribution, 5(1), 70–80.
  • Bouchekara, H. R. E. H. (2014). Optimal power flow using black-hole-based optimization approach. Applied Soft Computing, 24, 879–888.
  • Bouchekara, H. R. E. H., & Abido, M. A. (2014). Optimal power flow using differential search algorithm. Electric Power Components & Systems, 42(15), 1683–1699.
  • Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N. (2012). Optimal power flow using gravitational search algorithm. Energy Conversion & Management, 59, 86–95.
  • El-Fergany, A. A. (2018). Extracting optimal parameters of PEM fuel cells using salp swarm optimizer. Renewable Energy, 119, 641–648.
  • El-Fergany, A. A., & Hasanien, H. M. (2015). Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electric Power Components & Systems, 43(13), 1548–1559.
  • El-Fergany, A. A., & Hasanien, H. M. (2018). Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons. Applied Soft Computing, 64, 307–316.
  • El-Fergany, A. A., & Hasanien, H. M. (2019). Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis. Neural Computing and Applications. in press. doi:10.1007/s00521-019-04029-8
  • El-Fergany, A. A., Othman, A. M., & El-Arini, M. M. (2014). Synergy of a genetic algorithm and simulated annealing to maximize real power loss reductions in transmission networks. International Journal of Electrical Power & Energy Systems, 56, 307–315.
  • Ghasemi, M., Ghavidel, S., Aghaei, J., & Akbari, L. L. (2018). CFA optimizer: A new and powerful algorithm inspired by Franklin’s and Coulomb’s laws theory for solving the economic load dispatch problems. International Transactions on Electrical Energy Systems, 28, e2536.
  • Ghasemi, M., Ghavidel, S., Aghaei, J., Gitizadeh, M., & Falah, H. (2014). Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system. Chaos, Solitons & Fractals, 69, 271–284.
  • Ghasemi, M., Ghavidel, S., Ghanbarian, M., Gharibzadeh, M., & Vahed, A. (2014). Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm. Energy, 78, 276–289.
  • Ghasemi, M., Ghavidel, S., Gitizadeh, M., & Akbari, E. (2015). An improved teaching–Learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow. International Journal of Electrical Power & Energy Systems, 65, 375–384.
  • Ghasemi, M., Ghavidel, S., Rahmani, S., Roosta, A., & Falah, H. (2014). A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions. Engineering Applications of Artificial Intelligence, 29, 54–69.
  • Ghorbani, N., & Babaei, E. (2018). The exchange market algorithm with smart searching for solving economic dispatch problems. International Journal of Management Science and Engineering Management, 13(3), 175–187.
  • Ghorbani, N., Vakili, S., & Sarkhosh, A. (2017). A new coding for solving large-scale non-convex economic dispatch problems without a penalty factor. International Journal of Management Science and Engineering Management, 12(4), 256–268.
  • Gonidakis, D. (2016). Application of flower pollination algorithm to multi-objective environmental/economic dispatch. International Journal of Management Science and Engineering Management, 11(4), 213–221.
  • Hasanien, H. M., & El-Fergany, A. A. (2019). Salp swarm algorithm-based optimal load frequency control of hybrid renewable power systems with communication delay and excitation cross-coupling effect. Electric Power Systems Research, 176, 105938.
  • Hazra, J., & Sinha, A. K. (2011). A multi-objective optimal power flow using particle swarm optimization. European Transactions on Electrical Power, 21(1), 1028–1045.
  • Hegazy, A. E., Makhlouf, M. A., & El-Tawel, G. S. (2019). Feature selection using chaotic salp swarm algorithm for data classification. Arabian Journal for Science and Engineering, 44(4), 3801–3816.
  • Herbadji, O., Slimani, L., & Bouktir, T. (2016). Solving bi-objective optimal power flow using hybrid method of biogeography-based optimization and differential evolution algorithm: A case study of the Algerian electrical network. Journal of Electrical Systems, 12(1), 197–215.
  • Jahan, M. S., & Amjady, N. (2013). Solution of large-scale security constrained optimal power flow by a new bi-level optimisation approach based on enhanced gravitational search algorithm. IET Generation, Transmission, & Distribution, 7(12), 1481–1491.
  • Khunkitti, S., Siritaratiwat, A., Premrudeepreechacharn, S., Chatthaworn, R., & Watson, N. R. (2018). A hybrid DA-PSO optimization algorithm for multiobjective optimal power flow problems. Energies, 11(9), 2270.
  • Kotb, M. F., & El-Fergany, A. A. (2019). Optimal power flow solution using moth swarm optimizer considering generating units prohibited zones and valve ripples. Journal of Electrical Engineering & Technology. in press. doi:10.1007/s42835-019-00144-7
  • Kumari, M. S., & Maheswarapu, S. (2010). Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. International Journal of Electrical Power & Energy Systems, 32(6), 736–742.
  • Liang, R. H., Tsai, S. R., Chen, Y. T., & Wan-Tsun, T. (2011). Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electric Power Systems Research, 81(7), 1466–1474.
  • Lu, P., Zhou, J., Zhang, H., Zhang, R., & Wang, C. (2014). Chaotic differential bee colony optimization algorithm for dynamic economic dispatch problem with valve-point effects. International Journal of Electrical Power & Energy Systems, 62, 130–143.
  • Mahdad, B. (2019). Improvement optimal power flow solution under loading margin stability using new partitioning whale algorithm. International Journal of Management Science and Engineering Management, 14(1), 64–77.
  • MATPOWER. (2019). The IEEE 30-bus and 57-bus test systems. Retrieved from http://www.pserc.cornell.edu/matpower
  • Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.
  • Mohagheghi, E., Alramlawi, M., Gabash, A., & Li, P. (2018). A survey of real-time optimal power flow. Energies, 11(11), 3142.
  • Niknam, T., Narimani, M., Jabbari, M., & Malekpour, A. R. (2011). A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy, 36(11), 6420–6432.
  • Ramesh, V. C., & Li, X. (1997). A fuzzy multiobjective approach to contingency constrained OPF. IEEE Transactions on Power Systems, 12(3), 1348–1354.
  • Reddy, S. S. (2019). Optimal power flow using hybrid differential evolution and harmony search algorithm. International Journal of Machine Learning and Cybernetics, 10(5), 1077–1091.
  • Reddy, S. S., & Panigrahi, B. K. (2017a). Application of swarm intelligent techniques with mixed variables to solve optimal power flow problems. International Journal of Bio-Inspired Computation, 10(4), 283–292.
  • Reddy, S. S., & Panigrahi, B. K. (2017b). Optimal power flow using clustered adaptive teaching learning-based optimisation. International Journal of Bio-Inspired Computation, 9(4), 226–234.
  • Rezaei, M., & Karami, A. (2013). Artificial bee colony algorithm for solving multiobjective optimal power flow problem. International Journal of Electrical Power & Energy Systems, 53, 219–230.
  • Rizk-Allah, R. M., Hassanien, A. E., Elhoseny, M., & Gunasekaran, M. A. (2019). A new binary salp swarm algorithm: Development and application for optimization tasks. Neural Computing and Applications, 31(5), 1641–1663.
  • Rosehart, W. D., Canizares, C. A., & Quintana, V. H. (2003). Multiobjective optimal power flows to evaluate voltage security costs in power networks. IEEE Transactions on Power Systems, 18(2), 578–587.
  • Roy, P. K., & Paul, C. (2015). Optimal power flow using krill herd algorithm. International Transactions on Electrical Energy Systems, 25(8), 1397–1419.
  • Shaheen, A. M., El-Sehiemy, R. A., & Farrag, S. M. (2016). Solving multi-objective optimal power flow problem via forced initialised differential evolution algorithm. IET Generation, Transmission, & Distribution, 10(7), 1634–1647.
  • Sivasubramani, S., & Swarup, K. S. (2011). Multi-objective harmony search algorithm for optimal power flow problem. International Journal of Electrical Power & Energy Systems, 33(3), 745–752.
  • Taher, M. A., Kamel, S., Jurado, F., & Ebeed, M. (2019a). An improved moth-flame optimization algorithm for solving optimal power flow problem. International Transactions on Electrical Energy Systems, 29(3), e2743.
  • Taher, M. A., Kamel, S., Jurado, F., & Ebeed, M. (2019b). Modified grasshopper optimization framework for optimal power flow solution. Electrical Engineering, 101(1), 121–148.
  • Vlachos, A. (2013). A new ant algorithm solving the combined economic and emission dispatch problem. International Journal of Management Science and Engineering Management, 8(2), 141–147.
  • Yang, X. S. (2010). Engineering optimization: An introduction with metaheuristic applications. London: Wiley. ISBN: 978-0-470-58246-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.