842
Views
19
CrossRef citations to date
0
Altmetric
Review

Novel immunotherapy in the treatment of advanced non-small cell lung cancer

, , , &
Pages 1571-1581 | Received 08 Aug 2016, Accepted 12 Sep 2016, Published online: 23 Sep 2016

References

  • Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008 Sep 25;359(13):1367–1380. DOI:10.1056/NEJMra0802714
  • Santabarbara G, Maione P, Rossi A, et al. Pharmacotherapeutic options for treating adverse effects of Cisplatin chemotherapy. Expert Opin Pharmacother. 2016 Mar;17(4):561–570. Epub 2015 Dec 17. DOI:10.1517/14656566.2016.1122757.
  • Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012 Mar;13(3):239–246. Epub 2012 Jan 26. DOI:10.1016/S1470-2045(11)70393-X.
  • Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009 Sep 3;361(10):947–957. Epub 2009 Aug 19. DOI:10.1056/NEJMoa0810699
  • Sequist LV, Yang JC, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013 Sep 20;31(27):3327–3334. Epub 2013 Jul 1. DOI:10.1200/JCO.2012.44.2806
  • Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–792. Feb 24, 2005. DOI:10.1056/NEJMoa044238.
  • Gao X, Le X, Costa DB. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer. Expert Rev Anticancer Ther. 2016;16:383–390. DOI:10.1586/14737140.2016.1162103.
  • Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013 Jun 20;368(25):2385–2394. Epub 2013 Jun 1. DOI:10.1056/NEJMoa1214886
  • Shaw AT, Kim DW, Mehra R, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014 Mar 27;370(13):1189–1197. DOI:10.1056/NEJMoa1311107
  • Nokihara H, Hida T, Kondo M, et al. Alectinib (ALC) versus crizotinib (CRZ) in ALK-inhibitor naive ALK-positive non-small cell lung cancer (ALK+ NSCLC): primary results from the J-ALEX study. J Clin Oncol. 2016;34(suppl; abstr 9008).
  • Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007 May;117(5):1137–1146.
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006 Oct;6(10):715–727. Epub 2006 Sep 15.
  • Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010 Jul 1;28(19):3167–3175. Epub 2010 Jun 1. DOI:10.1200/JCO.2009.26.7609
  • Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002 Sep 17; Epub 2002 Sep 6;99(19):12293–12297.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012 Jun 28;366(26):2443–2454. Epub 2012 Jun 2. DOI:10.1056/NEJMoa1200690
  • Hanson HL, Donermeyer DL, Ikeda H, et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity. 2000;13:265–276.
  • Klebanoff CA, Gattinoni L, Torabi-Parizi P, et al. Central memory self/tumr-reactive CD8+ T cells confer superior antitumor immunity compared with effector memori T cells. Proc Natl Acad Sci USA. 2005;102:9571–9576.
  • Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity an autoimmunity. J Immunol. 1999;163:5211–5218.
  • Woo E, Yeh H, Chu CS, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002 May 1;168(9):4272–4276.
  • Disis ML Immune regulation of cancer. J Clin Oncol. 2010 Oct 10;28(29):4531–4538. Epub 2010 Jun 1. DOI:10.1200/JCO.2009.27.2146
  • Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006 Nov;6(11):836–848.
  • Kerkar SP, Restifo NP Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012 Jul 1;72(13):3125–3130. Epub 2012 Jun 21. DOI:10.1158/0008-5472.CAN-11-4094
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252–264. DOI:10.1038/nrc3239.
  • Platonova S, Cherfils-Vicini J, Damotte D, et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 2011 Aug 15;71(16):5412–5422. Epub 2011 Jun 27. DOI:10.1158/0008-5472.CAN-10-4179
  • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–296.
  • Sgambato A, Casaluce F, Sacco PC, et al. Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced Non- Small Cell Lung Cancer (NSCLC): a review on toxicity profile and its management. Curr Drug Saf. 2016;11(1):62–68.
  • Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008Aug;224:166–182. DOI:10.1111/j.1600-065X.2008.00662.x
  • Sanmamed M, Chen L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J. 2014 Jul-Aug;20(4):256–261. DOI:10.1097/PPO.0000000000000061.
  • Okazaki T, Chikuma S, Iwai Y, et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013 Dec;14(12):1212–1218. DOI:10.1038/ni.2762
  • Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005 Nov;25(21):9543–9553.
  • Riley JL, Mao M, Kobayashi S, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci U S A. 2002 Sep 3; Epub 2002 Aug 23;99(18):11790–11795.
  • Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009 May;229(1):12–26. DOI:10.1111/j.1600-065X.2009.00770.x.
  • Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013;19(18):4917–4924.
  • Marengere LE, Waterhouse P, Duncan GS, et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996;272(5265):1170–1173.
  • Chuang E, Fisher TS, Morgan RW, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity. 2000;13(3):313–322.
  • Tomasini P, Khobta N, Greillier L, et al. Ipilimumab: its potential in non-small cell lung cancer. Ther Adv Med Oncol. 2012;4(2):43–50.
  • Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012 Jun 10;30(17):2046–2054. Epub 2012 Apr 30 Erratum in: J Clin Oncol. 2012 Oct 10; 30(29):3654. DOI:10.1200/JCO.2011.38.4032
  • Zatloukal P, Heo DS, Park K. Randomized phase II clinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2009;27(15s):suppl; abstr 8071.
  • Lee HE, Chae SW, Lee YJ, et al. Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer. 2008 Nov 18;99(10):1704–1711. Epub 2008 Oct 21. DOI:10.1038/sj.bjc.6604738
  • Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosinebased switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–954.
  • Sheppard K-A, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKC?. FEBS Lett. 2004;574(1–3):37–41.
  • Riley JL. PD‐1 signaling in primary T cells. Immunol Rev. 2009;229(1):114–125.
  • Blazar BR, Carreno BM, Panoskaltsis-Mortari A, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-g-dependent mechanism. J Immunol. 2003;171(3):1272–1277.
  • Baksh K, Weber J. immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and D-1 blokade and new combinations. Semin Oncol. 2015;42:363–377.
  • Teng MW, Ngiow SF, Ribas A, et al. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 2015 Jun 1;75(11):2139–2145. DOI:10.1158/0008-5472.CAN-15-0255.
  • Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, bms-936558, ono-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015 Jun 20;33(18):2004–2012. Epub 2015 Apr 20. DOI:10.1200/JCO.2014.58.3708
  • Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. N Engl J Med. 2015 Jul 9; 373(2):123–135. Epub 2015 May 31. DOI:10.1056/NEJMoa1504627
  • Paz-Ares L, Horn L, Borghaei H, et al. Phase III, randomized trial (checkmate-057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small-cell-lung-cancer (NSCLC). J Clin Oncol. 2015;33:suppl; abstr LBA109. Presented at ASCO 2015
  • Borghaei H, Brahmer JR, Horn L, et al. Nivolumab vs docetaxel in patients with advanced NSCLC: checkMate 017/057 2-y update and exploratory cytokine profile analyses. J Clin Oncol. 2016;34(suppl; abstr 9025); presented at ASCO.
  • Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(25):2980–2987.
  • Garon EB, Rizvi NA, Hui R, et al. KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015 May 21; 372:(21). 2018–2028. Epub 2015 Apr 19. DOI:10.1056/NEJMoa1501824
  • Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomized controlled trial. Lancet. 2016 Apr 9; 387(10027):1540–1550. Epub 2015 Dec 19. DOI:10.1016/S0140-6736(15)01281-7
  • Johnson DB, Rioth MJ, Horn L. Immune checkpoint inhibitors in NSCLC. Curr Treat Options Oncol. 2014;15(4):658–669.
  • Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–567.
  • Matsumoto K, Fukuyama S, Eguchi-Tsuda M, et al. B7-DC induced by IL-13 works as a feedback regulator in the effector phase of allergic asthma. Biochem Biophys Res Commun. 2008;365(1):170–175.
  • Akbari O, Stock P, Singh AK, et al. PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunol. 2010;3(1):81–91.
  • Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016 Apr 30;387(10030):1837–1846. Epub 2016 Mar 10. DOI:10.1016/S0140-6736(16)00587-0
  • http://www.roche.com/media/store/releases/med-cor-2016-09-01.htm
  • Besse B. Phase II trial (BIRCH) of atezolizumab as first-line or subsequent therapy for advanced D-L1-selected non-small-cell-lung-cancer (NSCLC). Presented at ELCC 15; p. Abstract LBA 16; Geneva.
  • Antonia SJ, Gettinger SN, Chow LQM, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) and ipilimumab in first-line NSCLC: interim phase I results. ASCO Meet Abstr. 2014;32(Suppl. 15):8023.
  • Gubens MW, Sequist LV, Stevenson J, et al. Phase I/II study of pembrolizumab (pembro) plus ipilimumab (ipi) as second-line therapy for NSCLC: KEYNOTE-021 cohorts D and H. J Clin Oncol. 2016;34(suppl; abstr 9027).
  • Ahn M, Yang J, Yu H, et al. Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. ELCC. 2016; abstract 136O.
  • Gibbons DL, Chow LQ, Kim D, et al. Efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): a phase I expansion in TKI-naïve patients (pts) with EGFR mutant NSCLC. ELCC. 2016; abstract 57O.
  • Rizvi NA, Chow LQM, Borghaei H, et al. Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC. ASCO Meet Abstr. 2014;32(Suppl. 15):8022.
  • Bristol-Meyers Squibb. Opdivo (nivolumab) prescribing information. Princeton (NJ); 2015 Nov.
  • Merk&Co, Inc. Keytruda (pembrolizumab) prescribing information. Whitehouse Station (NJ); 2015.
  • Hellmann MD, Creelan BC, Woo K, et al. 1229pd smoking history and response to nivolumab in patients with advanced NSCLCs. Ann Oncol. 2014;25(suppl 9):1821–1829. DOI:10.1093/annonc/mdu203
  • Hirsch F, Philip R, Averbuch SD, et al. Preliminary results comparing PD-L1 IHC diagnostic assay in lung cancer released. Presented at the AACR annual meeting 2016, April 19 2016; New Orleans.
  • Butts C, Socinski MA, Mitchell PL, et al.; START trial team. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage II non-small-cell-lung-cancer (START): a randomized, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68.
  • Quoix E, Lena H, Losonczy G, et al. TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncol. 2016 Feb;17(2):212–223. Epub 2015 Dec 23. DOI:10.1016/S1470-2045(15)00483-0
  • Giaccone G, Bazhenova LA, Nemunaitis J, et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer. 2015;51:2321–2329.
  • Gettinger S, Herbst RS. B7-H1/PD-1 blockade therapy in non-small cell lung cancer: current status and future direction. Cancer J. 2014;20(4):281–289.
  • Velcheti V, Schalper KA, Carvajal DE, et al. Programmed death ligand-1 expression in non-small-cell lung cancer. Lab Invest. 2014;94(1):107–116.
  • Kohrt HE, Thielens A, Marabelle A, et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood. 2014;123(5):678–686.
  • Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–541.
  • Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol. 2005;6:1245–1252.
  • Sabatos CA, Chakravarti S, Cha E, et al. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4:1102–1110.
  • Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–2194.
  • Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–2186.
  • Gao X, Zhu Y, Li G, et al. TIM-3 expression charac-terizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE. 2012;7:e30676.
  • Zhuang X, Zhang X, Xia X, et al. Ectopic expression of TIM-3 in lung cancers: a potential independent prognostic factor for patients with NSCLC. Am J Clin Pathol. 2012;137:978–985.
  • Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117:4501–4510.
  • Ngiow SF, Von Scheidt B, Akiba H, et al. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011;71:3540–3551.
  • Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–513.
  • Gandhi MK, Lambley E, Duraiswamy J, et al. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood. 2006;108:2280–2289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.