351
Views
4
CrossRef citations to date
0
Altmetric
Review

Ocular dysfunctions and toxicities induced by antiepileptic medications: Types, pathogenic mechanisms, and treatment strategies

Pages 309-328 | Received 11 Jan 2019, Accepted 04 Mar 2019, Published online: 20 Mar 2019

References

  • Engel J Jr. Etiology as a risk factor for medically refractory epilepsy: A case for early surgical intervention. Neurology. 1998;51(5):1243–1244.
  • Zaccara G, Cincotta M, Borgheresi A, et al. Adverse motor effects induced by antiepileptic drugs. Epileptic Disord. 2004;6(3):153–168.
  • Abtahi MA, Abtahi SH, Fazel F, et al. Topiramate and the vision: a systematic review. Clin Ophthalmol. 2012;6:117–131.
  • Maguire MJ, Hemming K, Wild JM, et al. Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia. 2010;51(12):2423–2431.
  • Hamed SA. The aspects and mechanisms of cognitive alterations in epilepsy: the role of antiepileptic medications. CNS Neurosci Ther. 2009;15(2):134–156.
  • Hamed SA. The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Rev Clin Pharmacol. 2016;9(6):807–819.
  • Hamed SA. Antiepileptic drugs influences on body weight in people with epilepsy. Expert Rev Clin Pharmacol. 2015;8(1):103–114.
  • Riikonen R, Rener-Primec Z, Carmant L, et al. Does vigabatrin treatment for infantile spasms cause visual field defects? An international multicentre study. Dev Med Child Neurol. 2015;57(1):60–67.
  • Fraunfelder FW, Fraunfelder FT. Adverse ocular drug reactions recently identified by the national registry of drug-induced ocular side effects. Ophthalmology. 2004;111(7):1275–1279.
  • Lessell S, Wolf PA, Chronley D. Prolonged vertical nystagmus after pentobarbital sodium administration. Am J Ophthalmol. 1975;80(1):151–152.
  • Edis RH, Mastaglia FL. Vertical gaze palsy in barbiturate intoxication. Br Med J. 1977. 15. 1(6054):144.
  • Barret LG, Vincent FM, Arsac PL, et al. Internuclear ophthalmoplegia in patients with toxic coma. Frequency, prognostic value, diagnostic significance. J Toxicol Clin Toxicol. 1983;20(4):373–379.
  • Spector RH, Davidoff RA, Schwartzman RJ. Phenytoin-induced ophthalmoplegia. Neurology. 1976;26(11):1031–1034.
  • Riker WK, Dowwnes H, Olsen GD, et al. Conjugate lateral gaze nystagmus and free Phenytoin concentrations in plasma: lack of correlation. Epilepsia. 1978;19(1):93–98.
  • Campbell WW Jr. Periodic alternating nystagmus in Phenytoin intoxication. Arch Neurol. 1980;37(3):178–180.
  • Sandyk R. Total external ophthalmoplegia induced by phenytoin. A case report. S Afr Med J. 1984;65(4):141–142.
  • Berger JR, Kovacs AG. Down beat nystagmus with phenytoin. J Clin Neuroophthalmol. 1982;2(3):209–211.
  • Cohen AF, Ashby L, Crowley D, et al. Lamotrigine (BW430C), a potential anticonvulsant. Effects on the central nervous system in comparison with Phenytoin and diazepam. Br J Clin Pharmacol. 1985;20(6):619–629.
  • Fredericks CA, Giannotta SL, Sadun AA. Dilantin-induced long-term bilateral total external ophthalmoplegia. J Clin Neuroophthalmol. 1986;6(1):22–26.
  • Remler BF, Leigh RJ, Osorio I, et al. The characteristics and mechanisms of visual disturbance associated with anticonvulsant therapy. Neurology. 1990;40(5):791–796.
  • Riva R, Contin M, Albani F, et al. Lateral gaze nystagmus in carbamazepine-treated epileptic patients: correlation with total and free plasma concentrations of parent drug and its free 10,11-epoxide metabolite. Ther Drug Monit. 1985;7(3):277–282.
  • Arnstein E. Oculogyric crisis: a distinct toxic effect of carbamazepine. J Child Neurol. 1986;1(3):289–290.
  • Schwartzman MJ, Leppik IE. Carbamazepine-induced dyskinesia and ophthalmoplegia. Cleve Clin J Med. 1990;57(4):367–372.
  • Seymour JF. Carbamazepine overdose. Features of 33 cases. Drug Saf. 1993;8(1):81–88.
  • Gorman M, Barkley GL. Oculogyric crisis induced by carbamazepine. Epilepsia. 1995;36(11):1158–1160.
  • Zaccara G, Gangemi PF, Messori A, et al. Effects of oxcarbazepine and carbamazepine on the central nervous system: computerised analysis of saccadic and smooth-pursuit eye movements. Acta Neurol Scand. 1992;85(6):425–429.
  • Specht U, May TW, Rohde M, et al. Cerebellar atrophy decreases the threshold of carbamazepine toxicity in patients with chronic focal epilepsy. Arch Neurol. 1997;54(4):427–431.
  • O’Donnell J, Bateman DN. Lamotrigine overdose in an adult. J Toxicol Clin Toxicol. 2000;38(6):659–660.
  • Veerapandiyan A, Gallentine WB, Winchester SA, et al. Oculogyric crises secondary to lamotrigine overdosage. Epilepsia. 2011;52(3):e4–6.
  • Gatzonis SD, Georgaculias N, Singounas E, et al. Elimination of oxcarbazepine-induced oculogyric crisis following vagus nerve stimulation. Neurology. 1999;52(9):1918–1919.
  • Hounnou P, Nicoucar K. Delayed onset of rotatory self-motion perception, dysdiadochokinesia and disturbed eye pursuit caused by low-dose pregabalin. BMJ Case Rep. 2014;2014:pii: bcr2013201282.
  • Lorenz R, Kuck H. Visual disorders caused by diphenylhydantoin: clinical and electro-ophthalmologic findings. Klin Monbl Augenheilkd. 1988;192(3):244–247.
  • Bayer A, Thiel HJ, Zrenner E, et al. Sensitive physiologic perceptual tests for ocular side effects of drugs exemplified by various anticonvulsants. Ophthalmologe. 1995;92(2):182–190.
  • Bayer AU, Thiel HJ, Zrenner E, et al. Color vision tests for early detection of antiepileptic drug toxicity. Neurology. 1997;48(5):1394–1397.
  • López L, Thomson A, Rabinowicz AL. Assessment of colour vision in epileptic patients exposed to single-drug therapy. Eur Neurol. 1999;41(4):201–205.
  • Thakral A, Shenoy R, Deleu D. Acute visual dysfunction following phenytoin-induced toxicity. Acta Neurol Belg. 2003;103(4):218–220.
  • Elder MJ. Diazepam and its effects on visual fields. Aust N Z J Ophthalmol. 1992 Aug;20(3):267–270.
  • Nielsen NV, Syversen K. Possible retinotoxic effect of carbamazepine. Acta Ophthalmol (Copenh). 1986;64(3):287–290.
  • Tomson T, Nilsson BY, Levi R. Impaired visual contrast sensitivity in epileptic patients treated with carbamazepine. Arch Neurol. 1988;45(8):897–900.
  • Nousiainen I, Kälviäinen R, Mäntyjärvi M. Color vision in epilepsy patients treated with vigabatrin or carbamazepine monotherapy. Ophthalmology. 2000;107(5):884–888.
  • Nousiainen I, Kälviäinen R, Mäntyjärvi M. Contrast and glare sensitivity in epilepsy patients treated with vigabatrin or carbamazepine monotherapy compared with healthy volunteers. Br J Ophthalmol. 2000;84(6):622–625.
  • Verrotti A, Lobefalo L, Priolo T, et al. Color vision in epileptic adolescents treated with valproate and carbamazepine. Seizure. 2004;13(6):411–417.
  • Paulus W, Schwarz G, Steinhoff BJ. The effect of anti-epileptic drugs on visual perception in patients with epilepsy. Brain. 1996;119(Pt 2):539–549.
  • Sorri I, Rissanen E, Mäntyjärvi M, et al. Visual function in epilepsy patients treated with initial valproate monotherapy. Seizure. 2005;14(6):367–370.
  • Tilz C, Wang-Tilz Y, Jünemann A, et al. Visual field defect during therapy with valproic-acid. Eur J Neurol. 2007;14(8):929–932.
  • Baulac M, Nordmann JP, Lanoé Y. Severe visual-field constriction and side-effects of GABA-mimetic antiepileptic drugs. Lancet. 1998;352(9127):546.
  • Faeda MT, Giallonardo AT, Marchetti A, et al. Vigabatrin therapy for resistant partial epilepsies. Neuropsicofarmace. 1993;15:105–108.
  • Eke T. Severe persistent visual field constriction associated with vigabatrin. BMJ. 1997;314(7075):180–181.
  • Krauss GL, Johnson MA, Miller NR. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology. 1998;50(3):614–618.
  • Lawden MC, Eke T, Degg C, et al. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry. 1999;67(6):716–722.
  • Versino M, Veggiotti P. Reversibility of vigabatrin induced visual-field defect. Lancet. 1999;354(9177):486.
  • Gross-Tsur V, Banin E, Shahar E, et al. Visual impairment in children with epilepsy treated with vigabatrin. Ann Neurol. 2000;48(1):60–64.
  • Harding GF, Wild JM, Robertson KA, et al. Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia. 2000;41(11):1420–1431.
  • Johnson MA, Krauss GL, Miller NR, et al. Visual function loss from vigabatrin: effect of stopping the drug. Neurology. 2000;55(1):40–45.
  • Krakow K, Polizzi G, Riordan-Eva P, et al. Recovery of visual field constriction following discontinuation of vigabatrin. Seizure. 2000;9(4):287–290.
  • Mecarelli O, Rinalduzzi S, Accornero N. Changes in color vision after a single dose of vigabatrin or carbamazepine in healthy volunteers. Clin Neuropharmacol. 2001;24(1):23–26.
  • Vanhatalo S, Nouisiainen I, Eriksson K, et al. Visual field constriction in 91 Finnish children treated with vigabatrin. Epilepsia. 2002;43(7):748–756.
  • Buncic JR, Westall CA, Panton CM, et al. Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology. 2004;111(10):1935–1942.
  • Hammoudi DS, Lee SS, Madison A, et al. Reduced visual function associated with infantile spasms in children with vigabatrin therapy. Invest Ophthalmol Vis Sci. 2005;46(2):514–520.
  • Durnian JM, Clearkin LG. Retinal nerve fibre layer characteristics with vigabatrin-associated visual field loss–could scanning laser polarimetry aid diagnosis? Eye (Lond). 2008;22(4):559–563.
  • Gaily E, Jonsson H, Lappi M. Visual fields at school-age in children treated with vigabatrin in infancy. Epilepsia. 2009;50(2):206–216.
  • Wild JM, Robson CR, Jones AL, et al. Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2006;47(3):917–924.
  • Pellock JM, Faught E, Sergott RC, et al. Registry initiated to characterize vision loss associated with vigabatrin therapy. Epilepsy Behav. 2011;22(4):710–717.
  • Moskowitz A, Hansen RM, Eklund SE, et al. Electroretinographic (ERG) responses in pediatric patients using vigabatrin. Doc Ophthalmol. 2012;124(3):197–209.
  • Wild JM, Fone DL, Aljarudi S, et al. Modelling the risk of visual field loss arising from long-term exposure to the antiepileptic drug vigabatrin: a cross-sectional approach. CNS Drugs. 2013;27(10):841–849.
  • Kjellström U, Andréasson S, Ponjavic V. Attenuation of the retinal nerve fibre layer and reduced retinal function assessed by optical coherence tomography and full-field electroretinography in patients exposed to vigabatrin medication. Acta Ophthalmol. 2014;92(2):149–157.
  • Origlieri C, Geddie B, Karwoski B, et al. Optical coherence tomography to monitor vigabatrin toxicity in children. J AAPOS. 2016;20(2):136–140.
  • Arndt CF, Husson J, Derambure P, et al. Retinal electrophysiological results in patients receiving lamotrigine monotherapy. Epilepsia. 2005;46(7):1055–1060.
  • Asensio-Sánchez VM, Torreblanca-Agüera B, Martínez-Calvo S, et al. Severe ocular side effects with Topamax. Arch Soc Esp Oftalmol. 2006;81(6):345–348.
  • Yeung TL, Li PS, Li KK. Presumed topiramate retinopathy: a case report. J Med Case Rep. 2016;10(1):210.
  • Kaufman KR, Lepore FE, Keyser BJ. Visual fields and tiagabine: a quandary. Seizure. 2001;10(7):525–529.
  • Sorri I, Kälviäinen R, Mäntyjärvi M. Color vision and contrast sensitivity in epilepsy patients treated with initial tiagabine monotherapy. Epilepsy Res. 2005;67(3):101–107.
  • Zaugg BE, Bell JE, Taylor KY, et al. Ezogabine (Potiga) maculopathy. Retin Cases Brief Rep. 2017;11(1):38–43.
  • Verrotti A, Trotta D, Cutarella R, et al. Effects of antiepileptic drugs on evoked potentials in epileptic children. Pediatr Neurol. 2000;23(5):397–402.
  • Hamed SA, Darwish ES, Youssef AH, et al. The effect of antiepileptic drugs on the evoked potentials of children with idiopathic epilepsy. J Pediatric Epilepsy. 2012;2:103–112.
  • Argumosa A, Herranz JL, Arteaga R, et al. Vigabatrin and alterations of the visual field. Rev Neurol. 1999;28(8):741–745.
  • Banta JT, Hoffman K, Budenz DL, et al. Presumed topiramate-induced bilateral acute angle-closure glaucoma. Am J Ophthalmol. 2001;132(1):112–114.
  • Cereza G, Pedrَs C, Garcia N, et al. Topiramate in non-approved indications and acute myopia or angle closure glaucoma. Br J Clin Pharmacol. 2005;60(5):578–579.
  • Viet Tran H, Ravinet E, Schnyder C, et al. Blood-brain barrier disruption associated with topiramate-induced angle-closure glaucoma of acute onset. Klin Monbl Augenheilkd. 2006;223(5):425–427.
  • Mandal A, Chatterjee S, Bose S, et al. Ocular adverse effects of Topiramate: two case reports. Indian J Pharmacol. 2008;40(6):278–280.
  • Natesh S, Rajashekhara SK, Rao A, et al. Topiramate-induced angle closure with acute myopia, macular striae. Oman J Ophthalmol. 2010;3(1):26–28.
  • Senthil S, Garudadri C, Rao HB, et al. Bilateral simultaneous acute angle closure caused by sulphonamide derivatives: a case series. Indian J Ophthalmol. 2010;58(3):248–252.
  • Gualtieri W, Janula J. Topiramate maculopathy. Int Ophthalmol. 2013;33(1):103–106.
  • Weiler DL. Zonisamide-induced angle closure and myopic shift. Optom Vis Sci. 2015;92(2):e46–51.
  • Bhattacharyya KB, Basu S. Acute myopia induced by topiramate: report of a case and review of the literature. Neurol India. 2005;53(1):108–109.
  • Latini MF, Romano LM. Topiramate-induced acute myopia with MRI contrast enhancement. Acta Neurol Belg. 2012;112(1):81–84.
  • Beyenburg S, Weyland C, Reuber M. Presumed topiramate-induced maculopathy. Epilepsy Behav. 2009;14(3):556–559.
  • Jürgens TP, Ihle K, Stork JH, et al. “Alice in Wonderland syndrome” associated with topiramate for migraine prevention. J Neurol Neurosurg Psychiatry. 2011;82(2):228–229.
  • Cerqueira AC, Nardi AE. Metamorphopsia associated with topiramate for migraine prevention. Arq Neuropsiquiatr. 2012;70(3):228–235.
  • Sierra-Hidalgo F, de Pablo-Fernández E. Palinopsia induced by topiramate and zonisamide in a patient with migraine. Clin Neuropharmacol. 2013;36(2):63–64.
  • Hilton EJ, Hosking SL, Betts T. Epilepsy patients treated with antiepileptic drug therapy exhibit compromised ocular perfusion characteristics. Epilepsia. 2002;43(11):1346–1350.
  • Aktaş S, Tetikoğlu M, İnan S, et al. Unilateral hemorrhagic macular infarction associated with marijuana, alcohol and antiepileptic drug intake. Cutan Ocul Toxicol. 2017;36(1):88–95.
  • Leigh RJ, Zee DS. The neurology of eye movements. Oxford: Oxford University press; 1999.
  • Frumkes TE, Nelson R. Functional role of GABA in cat retina. I. Effects of GABA agonists. Vis Neurosci. 1995;12(4):641–650.
  • Goto Y, Taniwaki T, Shigematsu J, et al. The long-term effects of antiepileptic drugs on the visual system in rats: electrophysiological and histopathological studies. Clin Neurophysiol. 2003;114(8):1395–1402.
  • Kjellström S, Bruun A, Isaksson B, et al. Retinal function and histopathology in rabbits treated with topiramate. Doc Ophthalmol. 2006;113(3):179–186.
  • Ikeda N, Ikeda T, Nagata M, et al. Ciliochoroidal effusion syndrome induced by sulfa derivatives. Arch Ophthalmol. 2002;120(12):1775.
  • Kumari S, Mishra CB, Tiwari M. Polypharmacological drugs in the treatment of epilepsy: the comprehensive review of marketed and new emerging molecules. Curr Pharm Des. 2016;22(21):3212–3225.
  • Thurston SE, Leigh RJ, Abel LA, et al. Slow saccades and hypometria in anticonvulsant toxicity. Neurology. 1984;34(12):1593–1596.
  • Noachtar S, von Maydell B, Fuhry L, et al. Gabapentin and carbamazepine affect eye movements and posture control differently: a placebo-controlled investigation of acute CNS side effects in healthy volunteers. Epilepsy Res. 1998;31(1):47–57.
  • Hamilton MJ, Cohen AF, Yuen WC, et al. Carbamazepine and lamotrigine in healthy volunteers: relevance to early tolerance and clinical trial dosage. Epilepsia. 1993;34(1):166–173.
  • Theodore WH, Narang PK, Holmes MD, et al. Carbamazepine and its epoxide: relation of plasma levels to toxicity and seizure control. Ann Neurol. 1989;25(2):194–196.
  • Gennaro Alfonso R. Extended release dosage forms. In: Remington: the Science and practice of pharmacy. 20th ed. Vol. 1. U.S.A: Lippincott Williams and Wilkins; 2000. p. 660–663.
  • Richens A. Clinical pharmacokinetics of phenytoin. Clin Pharmacokinet. 1979;4(3):153–169.
  • Young GB, Oppenheimer SR, Gordon BA, et al. Ataxia in institutionalised patients with epilepsy. Can J Neurol Sci. 1994;21(3):252–258.
  • Hogan RE, Collins SD, Reed RC, et al. Neuro-ophthalmological signs during rapid intravenous administration of phenytoin. J Clin Neurosci. 1999;6(6):494–497.
  • Caldwell JH, Schaller KL, Lasher RS, et al. Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A. 2000;97(10):5616–5620.
  • Barow E, Schneider SA, Bhatia KP, et al. Oculogyric crises: etiology, pathophysiology and therapeutic approaches. Parkinsonism Relat Disord. 2017;36:3–9.
  • Hildebrand GD, Fielder AR. Anatomy and physiology of the retina. In: Reynolds JD, Olitsky Scott E, editors. Pediatric retina. Berlin Heidelberg: Springer-Verlag; 2011. p. 39–65.
  • Dhingra NK, Freed MA, Smith RG. Voltage-gated sodium channels improve contrast sensitivity of a retinal ganglioncell. J Neurosci. 2005;25(35):8097–8103.
  • Zabouri N, Haverkamp S. Calcium channel-dependent molecular maturation of photoreceptor synapses. PLoS One. 2013;8(5):e63853.
  • Zhong YS, Wang J, Liu WM, et al. Potassium ion channels in retinal ganglion cells (review). Mol Med Rep. 2013;8(2):311–319.
  • Crooks J, Kolb H. Localization of GABA, glycine, glutamate and tyrosine hydroxylase in the human retina. J Comp Neurol. 1992;315(3):287–302.
  • Charles M. Ophthalmic Lasers. Philadelphia, Pennsylvania: Butterworth Heinemann; 2003.
  • McKendrick AM. Recent developments in perimetry: test stimuli and procedures. Clin Exp Optom. 2005;88(2):73–80.
  • Holder GE. The pattern electroretinogram. In: Fishman GA, Birch DG, Holder GE, et al., editors. Electrophysiologic testing in disorders of the retina, optic nerve, and visual pathway, Second Edition (Ophthalmology Monographs). San Francisco: The Foundation of the American Academy of Ophthalmology; 2001. p. 192–236.
  • Mcw VR, O’Brien BJ, Smith RG. Effects of noise on the spike timing precision of retinal ganglion cells. J Neurophysiol. 2003;89((5):):2406–2419.
  • Ahnelt PK, Kolb H. Short-wave length-sensitive cones: morphology and color-specific connections. In: Drum B, editor. Colour vision deficiencies XII. Dordrecht: Kluwer; 1995. p. 285–297.
  • Graham D. Neuropathology of vigabatrin. Br J Clin Pharmacol. 1989;27(Suppl 1):43S–5S.
  • Desai NS, Cudmore RH, Nelson SB, et al. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci. 2002;5(8):783–789.
  • Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10(9):647–658.
  • Roll L, Mittmann T, Eysel UT, et al. The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res. 2012;349(1):133–145.
  • Imbrosci B, Eysel UT, Mittmann T. Metaplasticity of horizontal connections in the vicinity of focal laser lesions in rat visual cortex. J Physiol. 2010;588(Pt 23):4695–4703.
  • Airaksinen E, Tuomisto L, Riikonen R. The concentrations of GABA, 5-HIAA and HVA in the cerebrospinal fluid of children with infantile spasms and the effects of ACTH treatment. Brain Dev. 1992;14(6):386–390.
  • Frumkes TE, Miller RF, Slaughter M, et al. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. III. Amacrine-mediated inhibitory influences on ganglion cell receptive-field organization: a model. J Neurophysiol. 1981;45(4):783–804.
  • Sills GJ, Butler E, Thompson GG, et al. Vigabatrin and tiagabine are pharmologically different drug. A pre-clinical study. Seizure. 1999;8(7):404–411.
  • John RA, Rimmer EM, Williams J, et al. Micro-vacuolation in rat brains after long term administration of GABAtransaminase inhibitors. Comparison of effects of ethanolamine-O-sulphate and vigabatrin. Biochem Pharmacol. 1987;36(9):1467–1473.
  • Pedersen B, Højgaard K, Dam M. Vigabatrin: no microvacuoles in a human brain. Epilepsy Res. 1987;1(1):74–76.
  • Hudnell HK, Boyes WK. The comparability of rat and human visual-evoked potentials. Neurosci Biobehav Rev. 1991;15(1):159–164.
  • Zemon V, Kaplan E, Ratliff F. Bicuculline enhances a negative component and diminishes a positive component of the visual evoked cortical potential in the cat. Proc Natl Acad Sci U S A. 1980;77(12):7476–7478.
  • Hayashi H, Okamoto M, Kawanishi H, et al. Ocular blood flow measured using laser speckle flowgraphy during aortic arch surgery with antegrade selective cerebral perfusion. J Cardiothorac Vasc Anesth. 2016;30(3):613–618.
  • Kamal S, Yadava U, Kumar S, et al. Topiramate-induced angle-closure glaucoma: cross-sensitivity with other sulphonamide derivatives causing anterior uveitis. Int Ophthalmol. 2014;34(2):345–349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.