1,234
Views
58
CrossRef citations to date
0
Altmetric
Review

The role of pharmacogenomics in adverse drug reactions

, & ORCID Icon
Pages 407-442 | Received 21 Dec 2018, Accepted 18 Mar 2019, Published online: 24 Apr 2019

References

  • Shoshi A, Hoppe T, Kormeier B, et al. GraphSAW: a web-based system for graphical analysis of drug interactions and side effects using pharmaceutical and molecular data. BMC Med Inform Decis Mak. 2015;15:15.
  • Rankin A, Cadogan CA, Patterson SM, et al. Interventions to improve the appropriate use of polypharmacy for older people. Cochrane Database Syst Rev. 2018;9:CD008165.
  • Sönnichsen A, Trampisch US, Rieckert A, et al. Polypharmacy in chronic diseases-reduction of inappropriate medication and adverse drug events in older populations by electronic decision support (PRIMA-eDS): study protocol for a randomized controlled trial. Trials. 2016;17:57.
  • Cacabelos R. Molecular pathology and pharmacogenomics in Alzheimer’s disease: polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth Find Exper Clin Pharmacol. 2007;29(A):1–91.
  • Cacabelos R. Pharmacogenomics in Alzheimer’s disease. Meth Mol Biol. 2008;448:213–357.
  • Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer’s disease. Future Neurol. 2015;10(3):229–252.
  • Davies EA, O’Mahony MS. Adverse drug reactions in special populations - the elderly. Br J Clin Pharmacol. 2015;80(4):796–807.
  • Cacabelos R., editor. World guide for drug use and pharmacogenomics. Corunna (ES): EuroEspes Publishing; 2012.
  • Just KS, Schneider KL, Schurig M, et al. Falls: the adverse drug reaction of the elderly and the impact of pharmacogenetics. Pharmacogenomics. 2017;18(13):1281–1297.
  • Marcath LA, Coe TD, Hoylman EK, et al. Prevalence of drug-drug interactions in oncology patients enrolled on national clinical trials network oncology clinical trials. BMC Cancer. 2018;18(1):1155.
  • Zheng WY, Richardson LC, Li L, et al. Drug-drug interactions and their harmful effects in hospitalised patients: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2018;74(1):15–27.
  • Patel RI, Beckett RD. Evaluation of resources for analyzing drug interactions. J Med Libr Assoc. 2016;104(4):290–295.
  • Shoshi A, Müller U, Shoshi A, et al. KALIS - an ehealth system for biomedical risk analysis of drugs. Stud Health Technol Inform. 2017;236:128–135.
  • Duke JD, Li X, Grannis SJ. Data visualization speeds review of potential adverse drug events in patients on multiple medications. J Biomed Inform. 2010;43(2):326–331.
  • Europharmagenics Database [Internet]. Corunna (ES): EuroEspes Publishing; 2015. Available from: www.europharmagenics.com
  • Wolters Kluwer clinical drug information [Internet]. USA; 2018. Available from: https://www.wolterskluwercdi.com/lexicomp-online/
  • PharmGKB. Stanford (US); 2018. Available from: https://www.pharmgkb.org/
  • Hwang Y, Oh M, Jang G, et al. Identifying the common genetic networks of ADR (adverse drug reaction) clusters and developing an ADR classification model. Mol Biosyst. 2017;13(9):1788–1796.
  • Samwald M, Miñarro Giménez JA, Boyce RD, et al. Pharmacogenomic knowledge representation, reasoning and genome-based clinical decision support based on OWL 2 DL ontologies. BMC Med Inform Decis Mak. 2015;15:12.
  • Zhang G, Zhang Y, Ling Y, et al. Web resources for pharmacogenomics. Genomics Proteomics Bioinf. 2015;13(1):51–54.
  • Collins SL, Carr DF, Pirmohamed M. Advances in the pharmacogenomics of adverse drug reactions. Drug Saf. 2016;39(1):15–27.
  • Weinshilboum RM, Wang L. Pharmacogenomics: precision medicine and drug response. Mayo Clin Proc. 2017;92(11):1711–1722.
  • Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med. 2017;19(1):20–29.
  • Zhou ZW, Chen XW, Sneed KB, et al. Clinical association between pharmacogenomics and adverse drug reactions. Drugs. 2015;75(6):589–631.
  • Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. IJMS. 2015;16:30483–30543.
  • Cacabelos R, Teijido O, Carril JC, et al. Pharmacoepigenetic processors: epigenetic drugs, drug resistance, toxicoepigenetics and nutriepigenenetics. In: Cacabelos R., editor. Pharmacoepigenetics. London: Academic Press/Elsevier. Forthcoming 2019. DOI:10.1016/13978-0-12-813939-4.00006-1.
  • Cacabelos R, Tellado I, Cacabelos P. The epigenetic machinery in the life cycle and pharmacoepigenetics. In: Cacabelos R., editor. Pharmacoepigenetics. London: Academic Press/Elsevier. Forthcoming 2019. DOI:10.1016/B978-0-12-813939-4.00001-2.
  • Cacabelos R. Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related risk factors. Future Neurol. 2018. DOI:10.2217/fnl–2017
  • Cacabelos R, Carril JC, Cacabelos P, et al. Pharmacogenomics of Alzheimer’s disease: genetic determinants of phenotypic variation and therapeutic outcome. J Genomic Med Pharmacogenomics. 2016;1(2):151–209.
  • Torrellas C, Carril JC, Cacabelos R. Benefits of pharmacogenetics in the management of hypertension. J Pharmacogenomics Pharmacoproteomics. 2014;5:126.
  • Torrellas C, Carril JC, Cacabelos R. Optimization of antidepressant use with pharmacogenetic strategies. Cur Genomics. 2017;18:442–449.
  • Cacabelos R, Cacabelos P, Torrellas C, et al. Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol. 2014;1175:323–556.
  • Weeke PE. Pharmacogenetics in cardiovascular medicine. Adv Pharmacol. 2018;83:333–360.
  • Osanlou O, Pirmohamed M, Daly AK. Pharmacogenetics of adverse drug reactions. Adv Pharmacol. 2018;83:155–190.
  • Reynolds KK, Pierce DL, Weitendorf F, et al. Avoidable drug-gene conflicts and polypharmacy interactions in patients participating in a personalized medicine program. Per Med. 2017;14(3):221–233.
  • Moyer AM, Caraballo PJ. The challenges of implementing pharmacogenomic testing in the clinic. Expert Rev Pharmacoecon Outcomes Res. 2017;17(6):567–577.
  • Cacabelos R, Torrellas C. Pharmacoepigenomics. In: Tollefsbol T., editor. Medical epigenetics. London: Elsevier; 2016. p. 586-617. DOI:10.1016/B978-0-12-803239-8.00032-6
  • Cacabelos R, Torrellas C, Teijido O, et al. Pharmacogenetic considerations in the treatment of Alzheimer’s disease. Pharmacogenomics. 2016;17(9):1041–1074.
  • Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr Drug Metab. 2015;16:86–96.
  • Chu SK, Yang HC. Interethnic DNA methylation difference and its implications in pharmacoepigenetics. Epigenomics. 2017;9(11):1437–1454.
  • Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res. 2011;34:1799–1816.
  • Cacabelos R, Fernández-Novoa L, Martínez-Bouza R, et al. Future trends in the pharmacogenomics of brain disorders and dementia: influence of APOE and CYP2D6 variants. Pharmaceuticals. 2010;3:3040–3100.
  • Xie HG, Kim RB, Wood AJ, et al. Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharm Toxicol. 2001;41:815–850.
  • Isaza C, Henao J, Ramírez E, et al. Polymorphic variants of the beta-2-adrenergic receptor (ADRB2) gene and ADRB2-related propanolol-induced dyslipidemia in the Colombian population. Meth Find Exp Clin Pharmacol. 2005;27:237–244.
  • Apellániz-Ruiz M, Inglada-Pérez L, Naranjo ME, et al. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenomics J. 2015;15(3):288–292.
  • Backman JT, Filppula AM, Niemi M, et al. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241.
  • Zhou Y, Lauschke VM. Comprehensive overview of the pharmacogenetic diversity in Ashkenazi Jews. J Med Genet. 2018;55(9):617–627.
  • Tucci JD, Pumuye PP, Helsby NA, et al. Pharmacogenomics in Papua New Guineans: unique profiles and implications for enhancing drug efficacy while improving drug safety. Pharmacogenet Genomics. 2018;28(6):153–164.
  • Rajman I, Knapp L, Morgan T, et al. African genetic diversity: implications for cytochrome P450-mediated drug metabolism and drug development. EBioMedicine. 2017;17:67–74.
  • Gaio V, Picanço I, Nunes B, et al. Pharmacogenetic profile of a South Portuguese population: results from the pilot study of the European Health Examination Survey in Portugal. Public Health Genomics. 2015;18(3):139–150.
  • Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28:249–268.
  • Haenisch S, Werk AN, Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol. 2014;77:587–596.
  • Zhou SF, Wang LL, Di YM, et al. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem. 2008;15:1981–2039.
  • Favela-Mendoza AF, Rangel-Villalobos H, Fricke-Galindo I, et al. Genetic variability among Mexican Mestizo and Amerindian populations based on three ABCB1 polymorphisms. Mol Biol Rep. 2018. DOI:10.1007/s11033-018-4419–x.
  • Morgado L, Preite V, Oplaat C, et al. Small RNAs reflect grandparental environments in apomictic dandelion. Mol Biol Evol. 2017;34(8):2035–2040.
  • Vick AD, Burris HH. Epigenetics and health disparities. Curr Epidemiol Rep. 2017;4(1):31–37.
  • Huang B, Jiang C, Zhang R. Epigenetics: the language of the cell? Epigenomics. 2014;6(1):73–88.
  • Cacabelos R, Torrellas C. Epigenetic drug discovery for Alzheimer’s disease. Expert Opin Drug Discov. 2014;9(9):1059–1086.
  • Cacabelos R. Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res. 2014;75(6):348–365.
  • Tajima S, Suetake I, Takeshita K, et al. Domain structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA methyltransferases. Adv Exp Med Biol. 2016;945:63–86.
  • Guo M, Li X, Zhang L, et al. Accurate quantification of 5-Methylcytosine, 5-Hydroxymethylcytosine, 5-Formylcytosine, and 5-Carboxylcytosine in genomic DNA from breast cancer by chemical derivatization coupled with ultra performance liquid chromatography- electrospray quadrupole time of flight mass spectrometry analysis. Oncotarget. 2017;8(53):91248–91257.
  • Klungland A, Robertson AB. Oxidized C5-methyl cytosine bases in DNA: 5-Hydroxymethylcytosine; 5-formylcytosine; and 5-carboxycytosine. Free Radic Biol Med. 2017;107:62–68.
  • Koyama M, Kurumizaka H. Structural diversity of the nucleosome. J Biochem. 2018;163(2):85–95.
  • Nizovtseva EV, Clauvelin N, Todolli S, et al. Nucleosome-free DNA regions differentially affect distant communication in chromatin. Nucleic Acids Res. 2017;45(6):3059–3067.
  • Simithy J, Sidoli S, Garcia BA. Integrating proteomics and targeted metabolomics to understand global changes in histone modifications. Proteomics. 2018. DOI:10.1002/pmic.201700309
  • Ru B, Sun J, Tong Y, et al. CR2Cancer: a database for chromatin regulators in human cancer. Nucleic Acids Res. 2018;46(D1):D918–D924.
  • He M, Han Z, Liu L, et al. Chemical biology approaches for investigating the functions of lysine acetyltransferases. Angew Chem Int Ed Engl. 2018;57(5):1162–1184.
  • Sabari BR, Zhang D, Allis CD, et al. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18(2):90–101.
  • Ernst C, Morton CC. Identification and function of long non-coding RNA. Front Cell Neurosci. 2013;7:168.
  • Li LC. Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics. 2014;9:45–52.
  • Rosenblat JD, Lee Y, McIntyre RS. The effect of pharmacogenomic testing on response and remission rates in the acute treatment of major depressive disorder: a meta-analysis. J Affect Disord. 2018;241:484–491.
  • Cacabelos R, Martínez-Bouza R. Genomics and pharmacogenomics of schizophrenia. CNS Neurosci Ther. 2010. DOI:10.1111/j.1755-5949.2010.00187.x
  • Cacabelos R, Martínez-Bouza R, Carril JC, et al. Genomics and pharmacogenomics of brain disorders. Curr Pharm Biotech. 2012;13:674–725.
  • Cacabelos R, Torrellas C. Pharmacogenomics of antidepressants. HSOA J Psychiatry Depress Anxiety. 2015;1:001.
  • Cacabelos R, Cacabelos P, Aliev G. Genomics and pharmacogenomics of antipsychotic drugs. Open J Psychiatry. 2013;3(46–139).
  • Spina E, de Leon J. Clinical applications of CYP genotyping in psychiatry. J Neural Transm. 2015;122(1):5–28.
  • Seripa D, Lozupone M, Miscio G, et al. CYP2D6 genotypes in revolving door patients with bipolar disorders: a case series. Medicine (Baltimore). 2018;97(37):e11998.
  • Pisanu C, Heilbronner U, Squassina A. The role of pharmacogenomics in bipolar disorder: moving towards precision medicine. Mol Diagn Ther. 2018;22(4):409–420.
  • Seripa D, Lozupone M, Stella E, et al. Psychotropic drugs and CYP2D6 in late-life psychiatric and neurological disorders what do we know? Expert Opin Drug Saf. 2017;16(12):1373–1385.
  • Chavan BS, Kaur G, Gupta D, et al. A prospective study to evaluate the effect of CYP2D6 polymorphism on plasma level of risperidone and its metabolite in North Indian patients with schizophrenia. Indian J Psychol Med. 2018;40(4):335–342.
  • de Leon J, Susce MT, Pan RM, et al. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry. 2005;66(1):15–27.
  • Cartwright AL, Wilby KJ, Corrigan S, et al. Pharmacogenetics of risperidone: a systematic review of the clinical effects of CYP2D6 polymorphisms. Ann Pharmacother. 2013;47(3):350–360.
  • Gunes A, Spina E, Dahl ML, et al. ABCB1 polymorphisms influence steady-state plasma levels of 9-hydroxyrisperidone and risperidone active moiety. Ther Drug Monit. 2008;30(5):628–633.
  • Correia CT, Almeida JP, Santos PE, et al. Pharmacogenetics of risperidone therapy in autism: association analysis of eight candidate genes with drug efficacy and adverse drug reactions. Pharmacogenomics J. 2010;10(5):418–430.
  • Brennan MD. Pharmacogenetics of second-generation antipsychotics. Pharmacogenomics. 2014;15(6):869–884.
  • Cabaleiro T, López-Rodríguez R, Román M, et al. Pharmacogenetics of quetiapine in healthy volunteers: association with pharmacokinetics, pharmacodynamics, and adverse effects. Int Clin Psychopharmacol. 2015;30(2):82–88.
  • Numata S, Umehara H, Ohmori T, et al. Clozapine pharmacogenetic studies in schizophrenia: efficacy and agranulocytosis. Front Pharmacol. 2018;9:1049.
  • Vasudev K, Choi YH, Norman R, et al. Genetic determinants of clozapine-induced metabolic side effects. Can J Psychiatry. 2017;62(2):138–149.
  • Girardin FR, Poncet A, Perrier A, et al. Cost-effectiveness of HLA-DQB1/HLA-B pharmacogenetic-guided treatment and blood monitoring in US patients taking clozapine. Pharmacogenomics J. 2018. DOI:10.1038/s41397-017-0004-2.
  • Zastrozhin MS, Brodyansky VM, Skryabin VY, et al. Pharmacodynamic genetic polymorphisms affect adverse drug reactions of haloperidol in patients with alcohol-use disorder. Pharmgenomics Pers Med. 2017;10:209–215.
  • Šimić I, Potočnjak I, Kraljičković I, et al. CYP2D6 *6/*6 genotype and drug interactions as cause of haloperidol-induced extrapyramidal symptoms. Pharmacogenomics. 2016;17(13):1385–1389.
  • Al Hadithy AF, Ivanova SA, Pechlivanoglou P, et al. Missense polymorphisms in three oxidative-stress enzymes (GSTP1, SOD2, and GPX1) and dyskinesias in Russian psychiatric inpatients from Siberia. Hum Psychopharmacol. 2010;25(1):84–91.
  • Fischer S, Gardini E, Haas F, et al. Polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis and antidepressant response – systematic review. Neurosci Biobehav Rev. 2018;S0149-7634(18)30431–7.
  • Clark SL, Adkins DE, Aberg K, et al. Pharmacogenomic study of side-effects for antidepressant treatment options in STAR*D. Psychol Med. 2012;42(6):1151–1162.
  • Zhu J, Klein-Fedyshin M, Stevenson JM. Serotonin transporter gene polymorphisms and selective serotonin reuptake inhibitor tolerability: review of pharmacogenetic evidence. Pharmacotherapy. 2017;37(9):1089–1104.
  • Stevenson JM, Bishop JR. Genetic determinants of selective serotonin reuptake inhibitor related sexual dysfunction. Pharmacogenomics. 2014;15(14):1791–1806.
  • Rahikainen AL, Palo JU, Haukka J, et al. Post-mortem analysis of suicide victims shows ABCB1 haplotype 1236T-2677T-3435T as a candidate predisposing factor behind adverse drug reactions in females. Pharmacogenet Genomics. 2018;28(4):99–106.
  • Saiz-Rodríguez M, Belmonte C, Román M, et al. Effect of polymorphisms on the pharmacokinetics, pharmacodynamics and safety of sertraline in healthy volunteers. Basic Clin Pharmacol Toxicol. 2018;122(5):501–511.
  • Tóth K, Csukly G, Sirok D, et al. Optimization of clonazepam therapy adjusted to patient’s CYP3A status and NAT2 genotype. Int J Neuropsychopharmacol. 2016. DOI:10.1093/ijnp/pyw083.
  • Zastrozhin MS, Antonenko AP, Nesterenko EV, et al. Effects of CYP2C19*17 polymorphisms on the efficacy and safety of bromodigyrochlorophenylbenzodiazepine in patients with anxiety disorder and comorbid alcohol use disorder. Drug Metab Pers Ther. 2018. DOI:10.1515/dmpt-2018-001.
  • Fricke-Galindo I, LLerena A, Jung-Cook H, et al. Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol. 2018;11(7):705–718.
  • Yip VL, Pirmohamed M. The HLA-A*31:01 allele: influence on carbamazepine treatment. Pharmgenomics Pers Med. 2017;10:29–38.
  • Chung WH, Hung S, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.
  • Chen P, Lin JJ, Lu CS, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364(12):1126–1133.
  • Djordjevic N, Jankovic SM, Milovanovic JR. Pharmacokinetics and pharmacogenetics of carbamazepine in children. Eur J Drug Metab Pharmacokinet. 2017;42(5):729–744.
  • Kim WJ, Lee JH, Yi J, et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics. 2010;20(4):249–256.
  • Chung WH, Chang WC, Lee YS, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA. 2014;312(5):525–534.
  • Yampayon K, Sukasem C, Limwongse C, et al. Influence of genetic and non-genetic factors on phenytoin-induced severe cutaneous adverse drug reactions. Eur J Clin Pharmacol. 2017;73(7):855–865.
  • Chang CC, Ng CC, Too CL, et al. Association of HLA-B*15:13 and HLA-B*15:02 with phenytoin-induced severe cutaneous adverse reactions in a Malay population. Pharmacogenomics J. 2017;17(2):170–173.
  • Su SC, Chen CB, Chang WC, et al. HLA alleles and CYP2C9*3 as predictors of phenytoin hypersensitivity in East Asians. Clin Pharmacol Ther. 2018. DOI:10.1002/cpt.1190.
  • Fricke-Galindo I, Martínez-Juárez IE, Monroy-Jaramillo N, et al. HLA-A*02:01:01/-B*35:01:01/-C*04:01:01 haplotype associated with lamotrigine-induced maculopapular exanthema in Mexican Mestizo patients. Pharmacogenomics. 2014;15(15):1881–1891.
  • Nelson EM, Philbrick AM. Avoiding serotonin syndrome: the nature of the interaction between tramadol and selective serotonin reuptake inhibitors. Ann Pharmacother. 2012;46(12):1712–1716.
  • Cacabelos R. Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiat Dis Treat. 2007;3:303–333.
  • Cacabelos R, Llovo R, Fraile C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Cur Alzheimer Res. 2007;4:479–500.
  • Cacabelos R, Goldgaber D, Vostrov A, et al. APOE-TOMM40 in the pharmacogenomics of demetia. J Pharmacogenomics Pharmacoproteomics. 2014;5:135.
  • Parkinson’s CR. disease: from pathogenesis to pharmacogenomics. Int J Mol Sci. 2017;2017(18):551.
  • Cacabelos R. Pharmacogenomics of Alzheimer’s and Parkinson’s diseases. Neurosci Lett. 2018; [cited 2018 Sept 18]. DOI:10.1016/j.neulet.
  • Cacabelos R, Fernández-Novoa L, Alejo R, et al. E-PodoFavalin-15999 (Atremorine®)-induced dopamine response in Parkinson’s Disease: pharmacogenetics-related effects. J Genomic Med Pharmacogenomics. 2016;1:1–26.
  • Hajj A, Ghosn M, Mourad D, et al. Lethal hepatotoxicity following 5-fluorouracil/cisplatin chemotherapy: a relevant case report. Per Med. 2017;14(3):197–201.
  • Moradi-Marjaneh R, Khazaei M, Seifi S, et al. Pharmacogenetics of anticancer drug sensitivity and toxicity in colorectal cancer. Curr Pharm Des. 2018;24(23):2710–2718.
  • Abaji R, Ceppi F, Patel S, et al. Genetic risk factors for VIPN in childhood acute lymphoblastic leukemia patients identified using whole-exome sequencing. Pharmacogenomics. 2018;19(15):1181–1193.
  • Bray J, Sludden J, Griffin MJ, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer. 2010;102(6):1003–1009.
  • Inoue K, Sonobe M, Kawamura Y, et al. Polymorphisms of the UDP-glucuronosyl transferase 1A genes are associated with adverse events in cancer patients receiving irinotecan-based chemotherapy. Tohoku J Exp Med. 2013;229(2):107–114.
  • Zaïr ZM, Singer DR. Efflux transporter variants as predictors of drug toxicity in lung cancer patients: systematic review and meta-analysis. Pharmacogenomics. 2016;17(9):1089–1112.
  • Zenke Y, Umemura S, Sugiyama E, et al. Successful treatment with afatinib after grade 3 hepatotoxicity induced by both gefitinib and erlotinib in EGFR mutation-positive non-small cell lung cancer. Lung Cancer. 2016;99(1–3):6.
  • Patel ND, Chakrabory K, Messmer G, et al. Severe sunitinib-induced myelosuppression in a patient with a CYP 3A4 polymorphism. J Oncol Pharm Pract. 2018;24(8):623–626.
  • Maeda A, Ando H, Ura T, et al. Association between ABCG2 and SLCO1B1 polymorphisms and adverse drug reactions to regorafenib: a preliminary study. Int J Clin Pharmacol Ther. 2017;55(5):409–415.
  • Quintanilha JCF, de Sousa VM, Visacri MB, et al. Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity. Cancer Chemother Pharmacol. 2017;80(2):223–233.
  • Sini V, Botticelli A, Lunardi G, et al. Pharmacogenetics and aromatase inhibitor induced side effects in breast cancer patients. Pharmacogenomics. 2017;18(8):821–830.
  • Ross CJ, Katzov-Eckert H, Dubé MP, et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet. 2009;41(12):1345–1349.
  • Drögemöller BI, Monzon JG, Bhavsar AP, et al. Association between SLC16A5 genetic variation and cisplatin-induced ototoxic effects in adult patients with testicular cancer. JAMA Oncol. 2017;3(11):1558–1562.
  • Del Re M, Latiano T, Fidilio L, et al. Unusual gastrointestinal and cutaneous toxicities by bleomycin, etoposide, and cisplatin: a case report with pharmacogenetic analysis to personalize treatment. Epma J. 2017;8(1):69–73.
  • Lambrecht L, Sleurs C, Labarque V, et al. The role of the MTHFR C677T polymorphism in methotrexate-induced toxicity in pediatric osteosarcoma patients. Pharmacogenomics. 2017;18(8):787–795.
  • Meulendijks D, Cats A, Beijnen JH, et al. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - ready for clinical practice? Cancer Treat Rev. 2016;50:23–34.
  • Loganayagam A, Arenas Hernandez M, Corrigan A, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer. 2013;108(12):2505–2515.
  • Pellicer M, García-González X, García MI, et al. Identification of new SNPs associated with severe toxicity to capecitabine. Pharmacol Res. 2017;120:133–137.
  • Lam SW, Guchelaar HJ, Boven E. The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat Rev. 2016;50:9–22.
  • Fernandez-Rozadilla C, Cazier JB, Moreno V, et al. Pharmacogenomics in colorectal cancer: a genome-wide association study to predict toxicity after 5-fluorouracil or FOLFOX administration. Pharmacogenomics J. 2013;13(3):209–217.
  • Yin JY, Meng XG, Qian CY, et al. Association of positively selected eIF3a polymorphisms with toxicity of platinum-based chemotherapy in NSCLC patients. Acta Pharmacol Sin. 2015;36(3):375–384.
  • Zheng D, Chen Y, Gao C, et al. Polymorphisms of p53 and MDM2 genes are associated with severe toxicities in patients with non-small cell lung cancer. Cancer Biol Ther. 2014;15(11):1542–1551.
  • Tulsyan S, Chaturvedi P, Agarwal G, et al. Pharmacogenetic influence of GST polymorphisms on anthracycline-based chemotherapy responses and toxicity in breast cancer patients: a multi-analytical approach. Mol Diagn Ther. 2013;17(6):371–379.
  • Magdy T, Burmeister BT, Burridge PW. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: what is missing? Pharmacol Ther. 2016;168:113–125.
  • Aminkeng F, Bhavsar AP, Visscher H, et al. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015;47(9):1079–1084.
  • Aminkeng F, Ross CJD, Rassekh SR, et al. Pharmacogenomic screening for anthracycline-induced cardiotoxicity in childhood cancer. Br J Clin Pharmacol. 2017;83(5):1143–1145.
  • Beitelshees AL, Voora D, Lewis JP. Personalized antiplatelet and anticoagulation therapy: applications and significance of pharmacogenomics. Pharmgenomics Pers Med. 2015;8:43–61.
  • Liu J, Jiang HH, Wu DK, et al. Effect of gene polymorphims on the warfarin treatment at initial stage. Pharmacogenomics J. 2017;17(1):47–52.
  • Li J, Wang Y, Wang H. Distribution of CYP2C19 polymorphisms in Mongolian and Han nationals and the choice of specific antiplatelet drugs. Int J Clin Pharm. 2017;39(4):791–797.
  • Vazquez SR. Drug-drug interactions in an era of multiple anticoagulants: a focus on clinically relevant drug interactions. Blood. 2018;132(21):2230–2239.
  • Sennesael AL, Larock AS, Douxfils J, et al. Rivaroxaban plasma levels in patients admitted for bleeding events: insights from a prospective study. Thromb J. 2018;16:28.
  • Ma TK, Lam YY, Tan VP, et al. Variability in response to clopidogrel: how important are pharmacogenetics and drug interactions? Br J Clin Pharmacol. 2011;72(4):697–706.
  • Vasudeva K, Chaurasia P, Singh S, et al. Genetic signatures in ischemic stroke: focus on aspirin resistance. CNS Neurol Disord Drug Targets. 2017;16(9):974–982.
  • Yang L, Lu YL, Wang HJ, et al. [Pharmacogenomics study of 620 whole-exome sequencing: focusing on aspirin application]. Zhonghua Er Ke Za Zhi. 2016;54(5):332–336.
  • Richardson M, Kirkham J, Dwan K, et al. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol). Syst Rev. 2017;6(1):142.
  • Azuma J, Ohno M, Kubota R, et al; Pharmacogenetics-based tuberculosis therapy research group. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–1101.
  • Richardson M, Kirkham J, Dwan K, et al. CYP genetic variants and toxicity related to anti-tubercular agents: a systematic review and meta-analysis. Syst Rev. 2018;7(1):204.
  • Kim SH, Kim SH, Yoon HJ, et al. TNF-α genetic polymorphism −308G/A and antituberculosis drug-induced hepatitis. Liver Int. 2012;32(5):809–814.
  • Agarwal D, Udoji MA, Trescot A. Genetic testing for opioid pain management: a primer. Pain Ther. 2017;6(1):93–105.
  • Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem Pharmacol. 2018;153:196–204.
  • Volpe DA, Xu Y, Sahajwalla CG, et al. Methadone metabolism and drug-drug interactions: in Vitro and In Vivo literature review. J Pharm Sci. 2018;107(12):2983–2991.
  • Squillace N, Bozzi G, Colella E, et al. Darunavir-cobicistat-emtricitabine-tenofovir alafenamide: safety and efficacy of a protease inhibitor in the modern era. Drug Des Devel Ther. 2018;12:3635–3643.
  • Arruda MB, Campagnari F, de Almeida TB, et al. Single nucleotide polymorphisms in cellular drug transporters are associated with intolerance to antiretroviral therapy in Brazilian HIV-1 positive individuals. PLoS One. 2016 Sep;11(9):e0163170.
  • Ciccacci C, Latini A, Politi C, et al. Impact of glutathione transferases genes polymorphisms in nevirapine adverse reactions: a possible role for GSTM1 in SJS/TEN susceptibility. Eur J Clin Pharmacol. 2017;73(10):1253–1259.
  • Swart M, Evans J, Skelton M, et al. An expanded analysis of pharmacogenetics determinants of efavirenz response that includes 3ʹ-UTR single nucleotide polymorphisms among Black South African HIV/AIDS patients. Front Genet. 2016;6:356.
  • Gallien S, Journot V, Loriot M, et al. Cytochrome 2B6 polymorphism and efavirenz-induced central nervous system symptoms: a substudy of the ANRS ALIZE trial. HIV Med. 2017;18(8):537–545.
  • de Oliveira Rodrigues R, Helena Barem Rabenhorst S, Germano de Carvalho P, et al. Association of IL10, IL4, IFNG, and CTLA4 gene polymorphisms with efavirenz hypersensitivity reaction in patients infected with human immunodeficiency virus. Jpn J Infect Dis. 2017;70(4):430–436.
  • Kellick K. Organic ion transporters and statin drug interactions. Curr Atheroscler Rep. 2017;19(12):65.
  • Alam K, Crowe A, Wang X, et al. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-mediated transport: an updated review in the context of OATP-mediated drug-drug interactions. Int J Mol Sci. 2018;19(3):E855.
  • Danielak D, Karaźniewicz-Łada M, Główka F. Assessment of the risk of rhabdomyolysis and myopathy during concomitant treatment with ticagrelor and statins. Drugs. 2018. DOI:10.1007/s40265-018-0947-x
  • Maeda K. Organic anion transporting polypeptide (OATP)1B1 and OATP1B3 as important regulators of the pharmacokinetics of substrate drugs. Biol Pharm Bull. 2015;38(2):155–168.
  • Siddiqui M, Maroteau C, Veluchamy A, et al. A common missense variant of LILRB5 is associated with statin intolerance and myalgia. Eur Heart J. 2017 Dec;38(48):3569–3575.
  • Bellosta S, Corsini A. Statin drug interactions and related adverse reactions: an update. Expert Opin Drug Saf. 2018 Jan;17(1):25–37.
  • Marchesi F, Girmenia C, Goffredo BM, et al. Isavuconazole: case report and pharmacokinetic considerations. Chemotherapy. 2018 Nov;63(5):253–256.
  • Urban TJ, Nicoletti P, Chalasani N, et al. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B∗35:02 as a risk factor. J Hepatol. 2017 Jul;67(1):137–144.
  • Hung SI, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A. 2005;102(11):4134–4139.
  • Chung WH, Chang WC, Stocker SL, et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann Rheum Dis. 2015;74(12):2157–2164.
  • Wu R, Cheng YJ, Zhu LL, et al. Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies. Oncotarget. 2016 Dec;7(49):81870–81879.
  • Ke CH, Chung WH, Wen YH, et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J Rheumatol. 2017 Jun;44(6):835–843.
  • Plumpton CO, Alfirevic A, Pirmohamed M, et al. Cost effectiveness analysis of HLA-B*58:01 genotyping prior to initiation of allopurinol for gout. Rheumatology (Oxford). 2017 Oct;56(10):1729–1739.
  • Rollason V, Samer CF, Daali Y, et al. Prediction by pharmacogenetics of safety and efficacy of non-steroidal anti- inflammatory drugs: a review. Curr Drug Metab. 2014 Mar;15(3):326–343.
  • Kakuta Y, Kinouchi Y, Shimosegawa T. Pharmacogenetics of thiopurines for inflammatory bowel disease in East Asia: prospects for clinical application of NUDT15 genotyping. J Gastroenterol. 2018;53(2):172–180.
  • Yin D, Xia X, Zhang J, et al. Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose. Oncotarget. 2017;8(8):13575–13585.
  • Asadov C, Aliyeva G, Mustafayeva K. Thiopurine S-methyltransferase as a pharmacogenetic biomarker: significance of testing and review of major methods. Cardiovasc Hematol Agents Med Chem. 2017;15(1):23–30.
  • Hu M, Piller NB. Strategies for avoiding benzopyrone hepatotoxicity in lymphedema management-the role of pharmacogenetics, metabolic enzyme gene identification, and patient selection. Lymphat Res Biol. 2017;15(4):317–323.
  • Sychev DA, Shih NV, Kalle EG, et al. [Pharmacogenetic approaches to predicting the efficiency and safety of amlodipine in patients with arterial hypertension]. Biomed Khim. 2017;63(5):432–439.
  • Hallberg P, Persson M, Axelsson T, et al. Genetic variants associated with angiotensin-converting enzyme inhibitor-induced cough: a genome-wide association study in a swedish population. Pharmacogenomics. 2017;18(3):201–213.
  • Mahmoudpour SH, Veluchamy A, Siddiqui MK, et al. Meta-analysis of genome-wide association studies on the intolerance of angiotensin-converting enzyme inhibitors. Pharmacogenet Genomics. 2017;27(3):112–119.
  • Mugoša S, Djordjević N, Djukanović N, et al. Factors affecting the development of adverse drug reactions to β-blockers in hospitalized cardiac patient population. Patient Prefer Adherence. 2016;10:1461–1469.
  • Wojtczak A, Wojtczak M, Skrętkowicz J. The relationship between plasma concentration of metoprolol and CYP2D6 genotype in patients with ischemic heart disease. Pharmacol Rep. 2014;66(3):511–514.
  • Chatzopoulos GS, Koidou VP, Wolff LF. Systematic review of cyclosporin A-induced gingival overgrowth and genetic predisposition. Quintessence Int. 2017;48(9):711–724.
  • Potočnjak I, Likić R, Šimić I, et al. Dapsone-induced agranulocytosis-possible involvement of low-activity N-acetyltransferase 2. Fundam Clin Pharmacol. 2017;31(5):580–586.
  • Yusof W, Hua GS. Gene, ethnic and gender influences predisposition of adverse drug reactions to artesunate among Malaysians. Toxicol Mech Methods. 2012;22(3):184–192.
  • Dadheech S, Rao AV, Shaheen U, et al. Three most common nonsynonymous UGT1A6*2 polymorphisms (Thr181Ala, Arg184Ser and Ser7Ala) and therapeutic response to deferiprone in β-thalassemia major patients. Gene. 2013;531(2):301–305.
  • Staiger H, Schaeffeler E, Schwab M, et al. Pharmacogenetics: implications for modern type 2 diabetes therapy. Rev Diabet Stud. 2015;12(3–4):363–376. Fall-Winter.
  • Alachkar H, Fulton N, Sanford B, et al. Expression and polymorphism (rs4880) of mitochondrial superoxide dismutase (SOD2) and asparaginase induced hepatotoxicity in adult patients with acute lymphoblastic leukemia. Pharmacogenomics J. 2017;17(3):274–279.
  • Cecchin E, De Mattia E, Mazzon G, et al. A pharmacogenetic survey of androgen receptor (CAG)n and (GGN)n polymorphisms in patients experiencing long term side effects after finasteride discontinuation. Int J Biol Markers. 2014;29(4):e310–6.
  • Aziz RK, Hegazy SM, Yasser R, et al. Drug pharmacomicrobiomics and toxicomicrobiomics: from scattered reports to systematic studies of drug-microbiome interactions. Expert Opin Drug Metab Toxicol. 2018;14(10):1043–1055.
  • Zaza G, Granata S, Tomei P, et al. Personalization of the immunosuppressive treatment in renal transplant recipients: the great challenge in “omics” medicine. Int J Mol Sci. 2015;16(2):4281–4305.
  • Gore R, Chugh PK, Tripathi CD, et al. Pediatric off-label and unlicensed drug use and its implications. Curr Clin Pharmacol. 2017;12(1):18–25.
  • Sbaih N, Buss B, Goyal D, et al. Potentially serious drug interactions resulting from the pretravel health encounter. Open Forum Infect Dis. 2018. DOI:10.1093/ofid/ofy266.
  • Jung JW, Kim JY, Park IW, et al. Genetic markers of severe cutaneous adverse reactions. Korean J Intern Med. 2018;33(5):867–875.
  • Gerogianni K, Tsezou A, Dimas DK. Drug-Induced Skin Adverse Reactions: the Role of Pharmacogenomics in Their Prevention. Mol Diagn Ther. 2018;22(3):297–314.
  • Chen CB, Abe R, Pan RY, et al. An Updated Review of the Molecular Mechanisms in Drug Hypersensitivity. J Immunol Res. 2018;2018:6431694.
  • Ingelman-Sundberg M, Mkrtchian S, Zhou Y, et al. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics. 2018;12(1):26.
  • Imatoh T, Sai K, Saito Y. Pharmacogenomic information in the Warning section of drug labels: a comparison between labels in the United States and those in five other countries/regions. J Clin Pharm Ther. 2018;43(4):493–499.
  • Kim GJ, Lee SY, Park JH, et al. Role of preemptive genotyping in preventing serious adverse drug events in South Korean patients. Drug Saf. 2017;40(1):65–80.
  • Franconi F, Campesi I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women. Br J Pharmacol. 2014;171(3):580–594.
  • Plumpton CO, Pirmohamed M, Hughes DA. Cost-effectiveness of panel tests for multiple pharmacogenes associated with adverse drug reactions: an evaluation framework. Clin Pharmacol Ther. 2018. DOI:10.1002/cpt.1312
  • Schuck RN, Grillo JA. Pharmacogenomic biomarkers: an FDA perspective on utilization in biological product labeling. AAPS J. 2016;18(3):573–577.
  • Tan-Koi WC, Lim ES, Teo YY. Health regulatory communications of well-established safety-related pharmacogenomics associations in six developed countries: an evaluation of alignment. Pharmacogenomics J. 2017;17(2):121–127.
  • Shimazawa R, Ikeda M. Differences in pharmacogenomic biomarker information in package inserts from the United States, the United Kingdom and Japan. J Clin Pharm Ther. 2013;38(6):468–475.
  • Ishiguro A, Yagi S, Uyama Y. Characteristics of pharmacogenomics/biomarker-guided clinical trials for regulatory approval of anti-cancer drugs in Japan. J Hum Genet. 2013;58(6):313–316.
  • Bondon-Guitton E, Despas F, Becquemont L. The contribution of pharmacogenetics to pharmacovigilance. Therapie. 2016;71(2):223–228.
  • Awada Z, Zgheib NK. Pharmacogenovigilance: a pharmacogenomics pharmacovigilance program. Pharmacogenomics. 2014;15(6):845–856.
  • Blankstein S. Pharmacogenomics: history, barriers, and regulatory solutions. Food Drug Law J. 2014;69(2):273–314.
  • Maliepaard M, Nofziger C, Papaluca M, et al. Pharmacogenetics in the evaluation of new drugs: a multiregional regulatory perspective. Nat Rev Drug Discov. 2013;12(2):103–115.
  • Liou SY, Stringer F, Hirayama M. The impact of pharmacogenomics research on drug development. Drug Metab Pharmacokinet. 2012;27(1):2–8.
  • Haga SB, O’Daniel JM, Tindall GM, et al. Survey of US public attitudes toward pharmacogenetic testing. Pharmacogenomics J. 2012;12(3):197–204.
  • Nishimura AA, Shirts BH, Salama J, et al. Physician perspectives of CYP2C19 and clopidogrel drug-gene interaction active clinical decision support alerts. Int J Med Inform. 2016;86:117–125.
  • Obara T, Abe S, Satoh M, et al. Awareness regarding clinical application of pharmacogenetics among Japanese pharmacists. Pharmgenomics Pers Med. 2015;8:35–41.
  • Dunnenberger HM, Crews KR, Hoffman JM, et al. Preemptive clinical pharmacogenetics implementation: current programs in five US medical centers. Annu Rev Pharmacol Toxicol. 2015;55:89–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.