168
Views
14
CrossRef citations to date
0
Altmetric
Review

Parameters that determine dissolution and efficacy of itraconazole and its relevance to recalcitrant dermatophytoses

ORCID Icon, ORCID Icon & ORCID Icon
Pages 443-452 | Received 05 Jan 2019, Accepted 01 Apr 2019, Published online: 22 Apr 2019

References

  • Sardana K, Khurana A. Overview of causes and treatment of recalcitrant dermatophytoses. Sardana K, Khurana A, Garg S, et al., editors. IADVL manual on management of dermatophytoses. 1st. Delhi: CBS; 2018; p. 80–105.
  • Singh A, Masih A, Khurana A, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the Squalene epoxidase (SQLE) gene. Mycoses. 2018;61(7):477–484.
  • Khurana A, Masih A, Chowdhary A, et al. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with tinea corporis/cruris. Antimicrob Agents Chemother. 2018;62(12):e01038–18.
  • Sardana K, Khurana A, Singh A, et al. A pilot analysis of morphometricassessment of itraconazole brands using dermoscopy and its relevance in the current scenario. Indian Dermatol Online J. 2018;9(6):426–431.
  • Ac P, Dw D. Generic substitution of itraconazole resulting in sub-therapeutic levels and resistance. Int J Antimicrob Agents. 2007;30(1):93–94.
  • Sherrington PJ, Oliver R. Compaction and other granulation methods. In: Goldberg AS, editor. Granulation. London, Philadelphia: Heyden; 1981. p. 141–152.
  • Kristensen HG, Granulation: ST. A review of pharmaceutical wet granulation. Drug Dev Ind Pharm. 1987;13:803–872.
  • Conine JW, Hadley HR Preparation of small solid pharmaceutical spheres. Drug Cosmet Ind. 90: 38–41(1970).
  • Vasconcelos T, Marques S, Das Neves J, et al. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev. 2016;100:85–101.
  • Marsac PJ, Rumondor ACF, Nivens DE, et al. Effect of temperature and moisture on the miscibility of amorphous dispersions of felodipine and poly(vinyl pyrrolidone). J Pharm Sci. 2010;99:169–185.
  • Singh A, Bharati A, Frederiks P, et al. Effect of compression on the molecular arrangement of itraconazole–soluplus solid dispersions: induction of liquid crystals or exacerbation of phase separation? Mol Pharm. 2016;13:1879–1893.
  • Allegra S, Fatiguso G, De Francia S, et al. Pharmacokinetic evaluation of oral itraconazole for antifungal prophylaxis in children. Clin Exp Pharmacol Physiol. 2017;44:1083–1088.
  • Purohit HS, Ormes JD, Saboo S, et al. Insights into nano- and micron-scale phase separation in amorphous solid dispersions using fluorescence-based techniques in combination with solid state nuclear magnetic resonance spectroscopy. Pharm Res. 2017;34:1364–1377.
  • Ricarte RG, Lodge TP, Hillmyer MA. Detection of pharmaceutical drug crystallites in solid dispersions by transmission electron microscopy. Mol Pharm. 2015;12:983–990.
  • Li N, Gilpin CJ, Taylor LS. Understanding the impact of water on the miscibility and microstructure of amorphous solid dispersions: an AFM-LCR and TEM-EDX study. Mol Pharm. 2017;14:1691–1705.
  • Démuth B, Farkas A, Pataki H, et al. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning. Int J Pharm. 2016;498:234–244.
  • Trasi NS, Purohit HS, Wen H, et al. Non-sink dissolution behavior and solubility limit of commercial tacrolimus amorphous formulations. J Pharm Sci. 2017;106:264–272.
  • Bhardwaj V, Trasi NS, Zemlyanov DY, et al. Surface area normalized dissolution to study differences in itraconazole-copovidone solid dispersions prepared by spray-drying and hot melt extrusion. Int J Pharm. 2018;540(1–2):106–119.
  • Scholz P, Keck CM. Nanocrystals: from raw material to the final formulated oral dosage form-a review. Curr Pharm Des. 2015;21:4217–4228.
  • Cal K, Sollohub K. Spray drying technique. I: hardware and process parameters. J Pharm Sci. 2010;99:575–586.
  • Chin WWL, Parmentier J, Widzinski M, et al. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci. 2014;103:2980–2999.
  • Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65:315–499.
  • Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3–16.
  • Van Eerdenbrugh B, Van Den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.
  • Felton LA. Film coating of oral solid dosage form. Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 3rd. New York (NY): Informa Healthcare; 2007; p. 1729–1747.
  • Woodruff CW, Nuessle NO. Effect of processing variables on particles obtained by extrusion-spheronization processing. J Pharm Sci. 1972;61:787–790.
  • Fonner DE, Anderson RN, Banker SG. Granulation and tablet characteristics. In: Lachman L, editor. Pharmaceutical dosage forms: tablets. New York (NY): Marcel Dekker; 1981. p. 185–266.
  • Costa FO, Pais AACC, Sousa JJS. Analysis of formulation effects in the dissolution of ibuprofen pellets. Int J Pharm. 2004;270:9–19.
  • Mehta MA. Evaluation and characterization of pellets. In: Ghebre-Sellassie I, editor. Pharmaceutical pelletization technology. New York (NY): CRC press; 1989. p. 241–265.
  • Millili GP, Schwartz JB. The strength of microcrystalline cellulose pellets the effect of granulating with water/ethanol mixtures. Drug Dev Ind Pharm. 1990;16:1411–1426.
  • Bianchini R, Bruni G, Gazzaniga A, et al. Influence of extrusion-spheronization processing on the physical properties of dindobufen pellets containing pH adjusters. Drug Dev Ind Pharm. 1992;18:1485–1503.
  • Baert L, Vermeersch H, Remon JP, et al. Study of parameters important in the spheronization process. Int J Pharm. 1993;96:225–229.
  • Bataille B, Ligarski K, Jacob M, et al. Study of the influence of spheronization and drying conditions on the physicomechanical properties of neutral spheroids containing Avicel PH 101 and lactose. Drug Dev Ind Pharm. 1993;19:653–671.
  • O‘Connor RE, Schwartz JB, Spheronization II. Drug release from drug diluent mixtures. Drug Dev Ind Pharm. 1985;11:1837–1857.
  • Zhang G, Schwartz JB, Schnaare RL. Effect of spheronization technique on drug release from uncoated beads. Drug Dev Ind Pharm. 1990;16:1171–1184.
  • Newman D, Engers S, Bates I, et al. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97:4840–4856.
  • Swaminathan S, Sangwai M, Wawdhane S, et al. Soluble itraconazole in tablet form using disordered drug delivery approach: critical scale-up considerations and bio-equivalence studies. AAPS PharmSciTech. 2013;14(1):360–374.
  • Parmentier J, Tan EH, Low A, et al. Downstream drug product processing of itraconazole nanosuspension: factors influencing drug particle size and dissolution from nanosuspension-layered beads. Int J Pharm. 2017;524(1–2):443–453.
  • Kayaert P, Van Den Mooter G. Is the amorphous fraction of a dried nanosuspension caused by milling or by drying? A case study with Naproxen and Cinnarizine. Eur J Pharm Biopharm. 2012;81(3):650–656.
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–796.
  • Zhang K, Yu H, Luo Q, et al. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur J Pharm Biopharm. 2013;85:1285–1292.
  • Peeters J, Neeskens P, Tollenaere JP, et al. Characterization of the interaction of 2-hydroxypropyl-beta-cyclodextrin with itraconazole at pH 2, 4, and 7. J Pharm Sci. 2002;91:1414–1422.
  • Mellaerts R, Mols R, Jammaer JAG, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008;69:223–230.
  • Barone JA, Moskovitz BL, Guarnieri J, et al. Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother. 1998;42:1862–1865.
  • Willems L, van derGeest R, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther. 2001;26:159–169.
  • Brouwers J, Geboers S, Mols R, et al. Gastrointestinal behavior of itraconazole in humans–part 1: supersaturation from a solid dispersion and a cyclodextrin-based solution. Int J Pharm. 2017;525(1):211–217.
  • Kohri N, Yamayoshi Y, Xin H, et al. Improving the oral bioavailability of albendazole in rabbits by the solid dispersion technique. J Pharm Pharmacol. 1999;51:159–164.
  • Kondo N, Iwao T, Hirai KI, et al. Improved oral absorption of enteric coprecipitates of a poorly soluble drug. J Pharm Sci. 1994;83:566–570.
  • Miller DA, DiNunzio JC, Yang W, et al. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res. 2008;25:1450–1459.
  • Lentz KA. Current methods for predicting human food effect. AAPS J. 2008;10:282–288.
  • Abuhelwa AY, Foster DJ, Mudge S, et al. Population pharmacokinetic modeling of itraconazole and hydroxyitraconazole for oral SUBA-itraconazole and sporanox capsule formulations in healthy subjects in fed and fasted states. Antimicrob Agents Chemother. 2015;59(9):5681–5696.
  • Thiry J, Broze G, Pestieau A, et al. Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions. Eur J Pharm Sci. 2016;85:94–105.
  • Matsui K, Tsume Y, Amidon GE, et al. The evaluation of in vitro drug dissolution of commercially available oral dosage forms for itraconazole in Gastrointestinal Simulator with biorelevant media. J Pharm Sci. 2016;105:2804–2814.
  • Smith D, Velde V, Woestenborghs R, et al. The pharmacokinetics of oral itraconazole in AIDS patients. J Pharm Pharmacol. 1992;44:618–619.
  • Bradford CR, Prentice AG, Warnock DW, et al. Comparison of the multiple dose pharmacokinetics of two formulations of itraconazole during remission induction for acute myeloblastic leukaemia. J Antimicrob Chemother. 1991;28:555–560.
  • Van de Velde V, Van Peer AP, Heykants J, et al. Effect of food on the pharma-cokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy. 1996;16:424–428.
  • Zimmermann T, Yeates RA, Laufen H, et al. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol. 1994;14:147–150.
  • Van Peer A, Woestenborghs R, Heykants J, et al. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol. 1989;36:423–426.
  • Lange D, Pavao JH, Wu J, et al. Effect of a cola beverage on the bioavailability of itraconazole in the presence of H2 blockers. J Clin Pharmacol. 1987;37:535–540.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. PharmacolTher. 2013;138:103–141.
  • Haria M, Bryson HM, Goa KL. Itraconazole: a reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs. 1996;51:585–620.
  • Heykants J, Van Peer A, Van de Velde V, et al. The clinical pharmacokinetics of itraconazole: an overview. Mycoses. 1989;32:67–87.
  • Poirier JM, Cheymol G. Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet. 1998;35:461–473.
  • Sardana K, Arora P, Mahajan K Intracutaneous pharmacokinetics of oralantifungals and their relevance in recalcitrant cutaneous dermatophytosis: timeto revisit basics. Indian J Dermatol VenereolLeprol. 83 (6):730–732 (2017).
  • Raab WPE. The treatment of mycosis with imidazole derivatives. In: Raab WPE, editor. The treatment of mycosis with imidazole derivatives. Berlin: Springer; 1980. p. 1–157.
  • Cauwenbergh G, Degreef H, Heykants J, et al. Pharmacokinetic profile of orally administered itraconazole in human skin. J Am Acad Dermatol 18:263–268 (1988).
  • Piérard G, Arrese J, De Doncker P Antifungal activity of itraconazole and terbinafine in human stratum corneum: a comparative study. J Am Acad Dermatol 32:429–435 (1995).
  • De Doncker P. Pharmacokinetics of oral antifungal agents. Dermatol Ther. 1997;3:46–57.
  • Mrig P, Sardana K. Rationale of use of antifungal drugs based on skin pharmacokinetics. In: Sardana K, Khurana A, Garg S, et al., editors. IADVL manual on management of dermatophytoses. 1st ed. Delhi: CBS; 2018. p. 65–73.
  • De Doncker P, Gupta AK, Marynissen G, et al. Itraconazole pulse therapy for onychomycosis and dermatomycoses: an overview. J Am Acad Dermatol. 37:969–974(1997).
  • Parent D, Decroix J, Heenen M. Clinical experience with short schedules of itraconazole in the treatment of tinea corporis and/or tinea cruris. Dermatology. 1994;189:378–381.
  • Gupta AK, De Doncker P, Heremans A, et al. Itraconazole for the treatment of tinea pedis: a dose of 400 mg daily given for 1 week is similar in efficacy to 100 or 200 mg daily given for 2 to 4 weeks. J Am Acad Dermatol.36:789–792 (1997).
  • Gupta AK, Ryder JE The use of oral antifungal agents to treat onychomycosis. Dermatol Clin 21:469–479 (2003)
  • Roberts BJ, Friedlander SF. Tinea capitis: a treatment update. Pediatr Ann. 2005;34:191–200.
  • Ginter-Hanselmayer G, Seebacker C. Treatment of tinea capitis––a critical appraisal. J Dtsch Dermatol Ges. 2011;9:109–114.
  • Gupta AK, Solomon RS, Adam P. Itraconazole oral solution for the treatment of tinea capitis. Br J Dermatol. 1998;139:104–106.
  • Boonk W, Geer D, Kreek E, et al. Itraconazole in the treatment of tinea corporis and tinea cruris: comparison of two treatment schedules. Mycoses. 1998;41(11‐12):509–514.
  • Gupta AK, Groen K, Woestenborghs R, et al. Itraconazole pulse therapy is effective in the treatment of Majocchi’s granuloma: a clinical and pharmacokinetic evaluation and implications for possible effectiveness in tinea capitis. Clin Exp Dermatol. 1998;23:103–108.
  • Sardana K, Kaur R, Arora P, et al. Is antifungal resistance a cause for treatment failure in dermatophytosis: a study focused on tinea corporis and cruris from a tertiary centre? Indian Dermatol Online J. 2018;9(2):90–95.
  • Heinen MP, Cambier L, Antoine N, et al. Th1 and Th17 immune responses act complementarily to optimally control superficial dermatophytosis. J Invest Dermatol. 2018; 139(3), 626–637.
  • Kelly A, Nelson K, Goodwin M, et al. Adverse effects of topical corticosteroids. BMJ. 1972;14:114.
  • Kerner M, Ishay A, Ziv M, et al. Evaluation of the pituitary-adrenal axis function in patients on topical steroid therapy. J Am A cad Dermatol 65: 215–216(2011).
  • Allenby CF, Main RA, Marsden RA, et al. Effect on adrenal function of topically applied clobetasol propionate (Dermovate). Br Med J. 1975;4:619–621.
  • Cook D FDA experience: topical corticosteroids and HPA axis suppression. FDA pediatric subcommittee of the AIDAC; 2003 Oct 29-30 .
  • Carruthers JA, August PJ, Staughton RC. Observations on the systemic effect of topical clobetasol propionate (Dermovate). Br Med J. 1975;4:203–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.