519
Views
19
CrossRef citations to date
0
Altmetric
Review

Play in advance against neurodegeneration: exploring enteric glial cells in gut-brain axis during neurodegenerative diseases

ORCID Icon, , ORCID Icon &
Pages 555-564 | Received 13 Jan 2019, Accepted 25 Apr 2019, Published online: 06 May 2019

References

  • Buendia I, Michalska P, Navarro E, et al. Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104.
  • Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–186.
  • Willis AW, Schootman M, Kung N, et al. Epidemiology and neuropsychiatric manifestations of young onset Parkinson’s disease in the United States. Parkinsonism Relat Disord. 2013;19(2):202–206.
  • Nussbaum RL, Ellis CE. Alzheimer‘s disease and Parkinson‘s disease. N Engl J Med. 2003;348:1356–1364.
  • Pakpoor J, Goldacre M. The increasing burden of mortality from neurological diseases. Nat Rev Neurol. 2017;13(9):518–519.
  • Neal M, Richardson JR. Time to get Personal: A framework for personalized targeting of oxidative stress in neurotoxicity and neurodegenerative disease. Curr Opin Toxicol. 2018;7:127–132.
  • Metcalfe SM, Bickerton S, Fahmy T. Neurodegenerative disease: a perspective on cell-based therapy in the new era of cell-free nano-therapy. Curr Pharm Des. 2017;23(5):776–783.
  • Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4).
  • Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms and a new hope. Dis Model Mech. 2017;10(5):499–502.
  • Valera E, Spencer B, Masliah E. Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and Tau for the treatment of neurodegenerative disorders. Neurotherapeutics. 2016;13:179–189.
  • Jack CR Jr, Holtzman DM. Biomarker modeling of Alzheimer’s disease. Neuron. 2013;80:1347–1358.
  • Bancher C, Brunner C, Lassmann H, et al. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer‘s disease. Brain Res. 1989;477:90–99.
  • Sciacca G, Cicchetti F. Mutant huntingtin protein expression and blood-spinal cord barrier dysfunction in Huntington disease. Ann Neurol. 2017;82(6):981–994.
  • Solanki I, Parihar P, Parihar MS. Neurodegenerative diseases: from available treatments to prospective herbal therapy. Neurochem Int. 2016;95:100–108.
  • Bozyczko-Coyne D, Williams M. Comprehensive medical chemistry II: elsevier. Vol. 8, Neurodegeneration. 2007(6):193–228.
  • DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003. 31;302(5646):830–834.
  • Garden GA, La Spada AR. Intercellular (mis)communication in neurodegenerative disease. Neuron. 2012;73(5):886–901.
  • Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362(6411):181–185.
  • Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008;60(3):430–440.
  • Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–934.
  • Kuffler SW, Potter DD. Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol. 1964;27:290–320.
  • Domingues HS, Portugal CC, Socodato R, et al. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol. 2016;4:71.
  • Zuchero JB, Barres BA. Glia in mammalian development and disease. Development. 2015;142(22):3805–3809.
  • Lloyd AC, Stevens B. Editorial overview: glial biology. Curr Opin Neurobiol. 2017 Dec;47:iv–vi.
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487.
  • Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(Suppl 1):S232–S240.
  • Barbierato M, Facci L, Argentini C, et al. Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype. CNS Neurol Disord Drug Targets. 2013;12(5):608–618.
  • Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep. 2016;13:3391–3396.
  • Ko HM, Lee SH, Kim KC, et al. The role of TLR4 and Fyn interaction on lipopolysaccharide-Stimulated PAI-1 expression in astrocytes. Mol Neurobiol. 2015;52(1):8–25.
  • Viana SD, Valero J, Rodrigues-Santos P. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson‘s disease. J Neurochem. 2016;138(4):598–609.
  • Han C, Lu Y, Wei Y, et al. D-ribosylation induces cognitive impairment through RAGE-dependent astrocytic inflammation. Cell Death Dis. 2014;5:e1117.
  • Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005;26(3):349–354.
  • Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63(9):901–910.
  • Nakamura T, Tu S, Akhtar MW, et al. Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron. 2013;78(4):596–614.
  • Brkic M, Balusu S, Libert C, et al. Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm. 2015;2015:620581.
  • Srinivasan M, Lahiri DK. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer‘s disease and multiple sclerosis. Expert Opin Ther Targets. 2015;19(4):471–487.
  • Harper S, Wilkie N. MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets. 2003;7(2):187–200.
  • Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577–3587.
  • Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–783.
  • Chow AK, Gulbransen BD. Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am J Physiol Gastrointest Liver Physiol. 2017;312(2):G145–G152.
  • Sharkey KA. Emerging roles for enteric glia in gastrointestinal disorders. J Clin Invest. 2015;125(3):918–925.
  • Gulbransen BD, Christofi FL. Are we close to targeting enteric glia in gastrointestinal diseases and motility disorders? Gastroenterology. 2018;155(2):245–251.
  • McClain JL, Fried DE, Gulbransen BD. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol. 2015;1:631–645.
  • Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132:1344–1358.
  • Ibiza S, García-Cassani B, Ribeiro H, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440–443.
  • Turco F, Sarnelli G, Cirillo C, et al. Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells. Gut. 2014;63:105–115.
  • Esposito G, Capoccia E, Turco F, et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-α activation. Gut. 2013;63:1300–1312.
  • Da Silveira AB, de Oliveira EC, Neto SG, et al. Enteroglial cells act as antigen-presenting cells in chagasic megacolon. Hum Pathol. 2011;42(4):522–532.
  • Gulbransen BD, Sharkey KA. Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology. 2009;136:1349–1358.
  • Neunlist M, Rolli-Derkinderen M, Latorre R, et al. Enteric glial cells: recent developments and future directions. Gastroenterology. 2014;147(6):1230–1237.
  • Köhler CA, Maes M, Slyepchenko A, et al. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer‘s Disease. Curr Pharm Des. 2016;22(40):6152–6166.
  • Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease–the gut-brain axis and environmental factors. Nat Rev Neurol. 2015;11(11):625–636.
  • Hernández-Romero MC, Delgado-Cortés MJ, Sarmiento M, et al. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. Neurotoxicology. 2012;33(3):347–360.
  • Kempuraj D, Thangavel R, Selvakumar GP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216.
  • Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative tress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci. 2018;12:114.
  • Frossi B, De Carli M, Piemonte M, et al. Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by Th1 and Th2 cells. Mol Immunol. 2008;45(1):58–64.
  • Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology. 2009;73(10):768–774.
  • Litteljohn D, Mangano E, Clarke M, et al. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson‘s disease. Parkinsons Dis. 2010;2011:713517.
  • González H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation. 2014;11:201.
  • Kempuraj D, Devi RS, Madhappan B, et al. T lymphocyte subsets and immunoglobulins in intracranial tumor patients before and after treatment, and based on histological type of tumors. Int J Immunopathol Pharmacol. 2004;17(1):57–64.
  • Geyer S, Jacobs M, Hsu NJ. Immunity against bacterial infection of the central nervous system: an astrocyte perspective. Front Mol Neurosci. 2019;12:57.
  • Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today. 2000;21(3):141–147.
  • Rühl A, Nasser Y, Sharkey KA. Enteric glia. Neurogastroenterol Motil. 2004;16(Suppl 1):44–49.
  • Brucklacher-Waldert V, Carr EJ, Linterman MA, et al. Cellular plasticity of CD4+ T cells in the intestine. Front Immunol. 2014;5:488.
  • Esposito G, Sarnelli G, Capoccia E, et al. Autologous transplantation of intestine-isolated glia cells improves neuropathology and restores cognitive deficits in β amyloid-induced neurodegeneration. Sci Rep. 2016;6:22605.
  • Esposito G, Capoccia E, Gigli S, et al. HIV-1 Tat-induced diarrhea evokes an enteric glia-dependent neuroinflammatory response in the central nervous system. Sci Rep. 2017;7(1):7735.
  • Brown IAM, McClain JL, Watson RE, et al. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77–91.
  • Clairembault T, Kamphuis W, Leclair-Visonneau L, et al. Enteric GFAP expression and phosphorylation in Parkinson‘s disease. J Neurochem. 2014;130(6):805–815.
  • Schwiertz A, Spiegel J, Dillmann U, et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson‘s disease. Parkinsonism Relat Disord. 2018;50:104–107.
  • Chalazonitis A, Rao M. Enteric nervous system manifestations of neurodegenerative disease. Brain Res. 2018;1693(Pt B):207–213.
  • Leblhuber F, Geisler S, Steiner K, et al. Elevated fecal calprotectin in patients with Alzheimer‘s dementia indicates leaky gut. J Neural Transm (Vienna). 2015;122(9):1319–1322.
  • Wu S, Yi J, Zhang YG, et al. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3(4).
  • Buscarinu MC, Romano S, Mechelli R, et al. Intestinal permeability in relapsing-remitting multiple sclerosis. Neurotherapeutics. 2018;15(1):68–74.
  • Natale G, Pasquali L, Paparelli A, et al. Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol Motil. 2011;23(12):1056–1065.
  • Nagpal R, Yadav H. Bacterial translocation from the gut to the distant organs: an overview. Ann Nutr Metab. 2017;71(Suppl 1):11–16.
  • Braak H, Del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson‘s disease: separating the wheat from the chaff. J Parkinsons Dis. 2017;7(s1):S71–S85.
  • Rowin J, Xia Y, Jung B, et al. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep. 2017;5(18).
  • Freedman SN, Shahi SK, Mangalam AK. The “gut feeling”: breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics. 2018;15(1):109–125.
  • Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151(5):836–844.
  • Endres K, Schäfer KH. Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J Innate Immun. 2018;10(3):172–180.
  • Yacoubian TA. Neurodegenerative disorders: why do we need new therapies? In: Adeboye Adejare, ed Drug discovery approaches for the treatment of neurodegenerative disorders. Philadelphia (PA): Academic Press; 2017. p. 1–16.
  • Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson‘s disease. Neurobiol Aging. 2003;24(2):197–211.
  • Anderson G, Seo M, Berk M, et al. Gut permeability and microbiota in Parkinson‘s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr Pharm Des. 2016;22(40):6142–6151.
  • Shannon KM, Keshavarzian A, Mutlu E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson‘s disease. Mov Disord. 2012;27(6):709–715.
  • Clairembault T, Leclair-Visonneau L, Neunlist M, et al. Enteric glial cells: new players in Parkinson‘s disease? Mov Disord. 2015;30(4):494–498.
  • Ballard C, Gauthier S, Corbett A, et al. Alzheimer‘s disease. Lancet. 2011;377(9770):1019–1031.
  • Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel). 2018;11(2):44.
  • Rosenberg PB, Nowrangi MA, Lyketsos CG. Neuropsychiatric symptoms in Alzheimer‘s disease: what might be associated brain circuits? Mol Aspects Med. 2015;43–44:25–37.
  • Jeong S. Molecular and cellular basis of neurodegeneration in Alzheimer‘s disease. Mol Cells. 2017;40(9):613–620.
  • Puig KL, Lutz BM, Urquhart SA, et al. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J Alzheimers Dis. 2015;44(4):1263–1278.
  • Han X, Tang S, Dong L, et al. Loss of nitrergic and cholinergic neurons in the enteric nervous system of APP/PS1 transgenic mouse model. Neurosci Lett. 2017;642:59–65.
  • Wang L, Fleming SM, Chessele MF, et al. Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. Neuroreport. 2008;19(8):873–876.
  • Wang L, Magen I, Yuan PQ, et al. Mice overexpressing wild-type human alpha-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol Motil. 2012;24(9):e425–e436.
  • Arai H, Lee VM, Messinger ML, et al. Expression patterns of beta-amyloid precursor protein (beta-APP) in neural and nonneural human tissues from Alzheimer‘s disease and control subjects. Ann Neurol. 199; 30(5):686–693.
  • Joachim CL, Mori H, Selkoe D. Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature. 1989;341(6239):226–230.
  • Albanese V, Lawson VA, Hill AF, et al. Evidence for prion protein expression in enteroglial cells of the myenteric plexus of mouse intestine. Auton Neurosci. 2008;140(1–2):17–23.
  • Kovacs GG, Budka H. Prion diseases: from protein to cell pathology. Am J Pathol. 2008;172(3):555–565.
  • Kujala P, Raymond CR, Romeijn M, et al. Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog. 2011;7(12):e1002449.
  • Seelig DM, Mason GL, Telling GC, et al. Chronic wasting disease prion trafficking via the autonomic nervous system. Am J Pathol. 2011;179(3):1319–1328.
  • Ano Y, Sakudo A, Nakayama H, et al. Uptake and dynamics of infectious prion protein in the intestine. Protein Pept Lett. 2009;16(3):247–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.