609
Views
11
CrossRef citations to date
0
Altmetric
Review

The nephrotoxicity of new immunotherapies

&
Pages 513-521 | Received 25 Dec 2018, Accepted 29 Apr 2019, Published online: 08 May 2019

References

  • Alfarouk KO, Stock C-M, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15:71. PubMed PMID: 26180516.
  • Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015 Apr;25(4):198–213. . PubMed PMID: 25540894; PubMed Central PMCID: PMCPMC5424264. eng.
  • Anari F, Ramamurthy C, Zibelman M. Impact of tumor microenvironment composition on therapeutic responses and clinical outcomes in cancer. Future Oncol. 2018 Jun;14(14):1409–1421. PubMed PMID: 29848096; eng.
  • Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett. 2018 Oct;16(4):4105–4113. PubMed PMID: 30214551; PubMed Central PMCID: PMCPMC6126324. eng.
  • Perica K, Varela JC, Oelke M, et al. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6(1):e0004–e0004. PubMed PMID: 25717386.
  • Hodi FS, O‘Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19;363(8):711–723. PubMed PMID: 20525992; PubMed Central PMCID: PMCPMC3549297. eng.
  • Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015 Jul 9;373(2):123–135. PubMed PMID: 26028407; PubMed Central PMCID: PMCPMC4681400. eng.
  • Chen R, Zinzani PL, Fanale MA, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic hodgkin lymphoma. J Clin Oncol. 2017 Jul 1;35(19):2125–2132. PubMed PMID: 28441111; PubMed Central PMCID: PMCPMC5791843. eng.
  • Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011 Aug 25;365(8):725–733. PubMed PMID: 21830940; PubMed Central PMCID: PMCPMC3387277. eng.
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013 Apr 18;368(16):1509–1518. PubMed PMID: 23527958; PubMed Central PMCID: PMCPMC4058440. eng.
  • Kochenderfer JN, Somerville R, Lu L, et al. Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-Cell lymphoma. Blood. 2014;124(21):550.
  • Besser MJ, Shapira-Frommer R, Itzhaki O, et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res. 2013;19(17):4792.
  • Delp K, Momburg F, Hilmes C, et al. Functional deficiencies of components of the MHC class I antigen pathway in human tumors of epithelial origin. Bone Marrow Transplant. 2000 May;25(Suppl 2):S88–95. PubMed PMID: 10933198; eng.
  • Garcia-Lora A, Martinez M, Algarra I, et al. MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer. 2003 Sep 10;106(4):521–527. PubMed PMID: 12845647; eng.
  • Leone P, Shin EC, Perosa F, et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013 Aug 21;105(16):1172–1187. PubMed PMID: 23852952; eng.
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity‘s roles in cancer suppression and promotion. Science (New York, NY). 2011 Mar 25;331(6024):1565–1570. . PubMed PMID: 21436444; eng.
  • Pico de Coaña Y, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med. 2015 Aug 01;21(8):482–491.
  • Sharon E, Streicher H, Goncalves P, et al. Immune checkpoint inhibitors in clinical trials. Chin J Cancer. 2014;33(9):434–444. PubMed PMID: 25189716.
  • Alegre M-L, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4 [Review Article]. Nat Rev Immunol. 2001 Dec 01;1:220.
  • Carreno BM, Collins M. The B7 Family of Ligands and Its Receptors: new Pathways for Costimulation and Inhibition of Immune Responses. Annu Rev Immunol. 2002 Apr 01;20(1):29–53. .
  • Greenwald RJ, Latchman YE, Sharpe AH. Negative co-receptors on lymphocytes. Curr Opin Immunol. 2002 Jun 01;14(3):391–396. .
  • Gianchecchi E, Fierabracci A. Inhibitory receptors and pathways of lymphocytes: the role of PD-1 in treg development and their involvement in autoimmunity onset and cancer progression. Front Immunol. 2018;9:2374. PubMed PMID: 30386337.
  • Iwai Y, Hamanishi J, Chamoto K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26. PubMed PMID: 28376884.
  • Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543–9553. PubMed PMID: 16227604.
  • Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009 May;229(1):12–26. PubMed PMID: 19426212; PubMed Central PMCID: PMCPMC4186963. eng.
  • Schneider H, Smith X, Liu H, et al. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur J Immunol. 2008 Jan;38(1):40–47. PubMed PMID: 18095376; PubMed Central PMCID: PMCPMC5580795. eng.
  • Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A. 2001;98(24):13866–13871. PubMed PMID: 11698646.
  • Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett. 2004 Sep 10;574(1–3):37–41. PubMed PMID: 15358536; eng.
  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–1217. PubMed PMID: 22641383.
  • Seliger B, Harders C, Wollscheid U, et al. Suppression of MHC class I antigens in oncogenic transformants: association with decreased recognition by cytotoxic T lymphocytes. Exp Hematol. 1996 Sep;24(11):1275–1279. PubMed PMID: 8862437; eng.
  • Atkins D, Breuckmann A, Schmahl GE, et al. MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer. 2004 Mar 20;109(2):265–273. PubMed PMID: 14750179; eng.
  • Georgopoulos NT, Proffitt JL, Blair GE. Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene. 2000 Oct 5;19(42):4930–4935. PubMed PMID: 11039910; eng.
  • Li W, Deng XM, Wang CX, et al. Down-regulation of HLA class I antigen in human papillomavirus type 16 E7 expressing HaCaT cells: correlate with TAP-1 expression. Int J Gynecol Cancer. 2010 Feb;20(2):227–232. PubMed PMID: 20134267; eng.
  • Vertuani S, Triulzi C, Roos AK, et al. HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunol Immunother. 2009 May;58(5):653–664. PubMed PMID: 18820911; eng.
  • Herrmann F, Lehr HA, Drexler I, et al. HER-2/neu-mediated regulation of components of the MHC class I antigen-processing pathway. Cancer Res. 2004 Jan 1;64(1):215–220. PubMed PMID: 14729627; eng.
  • Mimura K, Ando T, Poschke I, et al. T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. Int J Cancer. 2011 Jan 15;128(2):390–401. PubMed PMID: 20715101; eng.
  • Seliger B. Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother. 2008 Nov;57(11):1719–1726. PubMed PMID: 18408926; eng.
  • Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev. 2014 Dec;23(12):2965–2970. PubMed PMID: 25392179; eng.
  • Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293–12297. PubMed PMID: 12218188; PubMed Central PMCID: PMCPMC129438. eng.
  • Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5(9):915.
  • Lafuente-Sanchis A, Zuniga A, Estors M, et al. Association of PD-1, PD-L1, and CTLA-4 gene expression and clinicopathologic characteristics in patients with non-small-cell lung cancer. Clin Lung Cancer. 2017 Mar;18(2):e109–e116. PubMed PMID: 27816393; eng.
  • Yokoyama S, Miyoshi H, Nakashima K, et al. Prognostic value of programmed death ligand 1 and programmed death 1 expression in thymic carcinoma. Clin Cancer Res. 2016 Sep 15;22(18):4727–4734. PubMed PMID: 27166394; eng.
  • Tsang JY, Au WL, Lo KY, et al. PD-L1 expression and tumor infiltrating PD-1+ lymphocytes associated with outcome in HER2+ breast cancer patients. Breast Cancer Res Treat. 2017 Feb;162(1):19–30. PubMed PMID: 28058578; eng.
  • Santoni G, Amantini C, Morelli MB, et al. High CTLA-4 expression correlates with poor prognosis in thymoma patients. Oncotarget. 2018 Mar 30;9(24):16665–16677. PubMed PMID: 29682176; PubMed Central PMCID: PMCPMC5908277. eng.
  • Yeo MK, Choi SY, Seong IO, et al. Association of PD-L1 expression and PD-L1 gene polymorphism with poor prognosis in lung adenocarcinoma and squamous cell carcinoma. Hum Pathol. 2017 Oct;68:103–111. PubMed PMID: 28851662; eng.
  • Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010 Feb 01;11(2):155–164.
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011 Jun 30;364(26):2517–2526.
  • Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–1894. PubMed PMID: 25667295.
  • Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J clin oncol. 2014 Apr 01;32(10):1020–1030. .
  • Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2014 2015 Jan 22;372(4):320–330.
  • Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (Anti–PD-1) in melanoma. N Engl J Med. 2013 Jul 11;369(2):134–144.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012 Jun 28;366(26):2443–2454.
  • Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016 Nov;17(11):1558–1568. PubMed PMID: 27622997; PubMed Central PMCID: PMCPMC5630525. eng.
  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017;377(14):1345–1356. PubMed PMID: 28889792.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015 Jul 2;373(1):23–34. PubMed PMID: 26027431; PubMed Central PMCID: PMCPMC5698905. eng.
  • Cortazar FB, Marrone KA, Troxell ML, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int. 2016 Sep;90(3):638–647. PubMed PMID: 27282937; PubMed Central PMCID: PMCPMC4983464. eng.
  • Wanchoo R, Karam S, Uppal NN, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol. 2017;45(2):160–169.
  • Kidd JM, Gizaw AB. Ipilimumab-associated minimal-change disease. Kidney Int. 2016 Mar;89(3):720. PubMed PMID: 26880464; eng.
  • Izzedine H, Gueutin V, Gharbi C, et al. Kidney injuries related to ipilimumab. Invest New Drugs. 2014 Aug;32(4):769–773. PubMed PMID: 24687600; eng.
  • Jung K, Zeng X, Bilusic M. Nivolumab-associated acute glomerulonephritis: a case report and literature review. BMC Nephrol. 2016 Nov 22;17(1):188. PubMed PMID: 27876011; PubMed Central PMCID: PMCPMC5120473. eng.
  • Belliere J, Meyer N, Mazieres J, et al. Acute interstitial nephritis related to immune checkpoint inhibitors. Br J Cancer. 2016 Dec 6;115(12):1457–1461. PubMed PMID: 27832664; PubMed Central PMCID: PMCPMC5155358. eng.
  • Thajudeen B, Madhrira M, Bracamonte E, et al. Ipilimumab granulomatous interstitial nephritis. Am J Ther. 2015 May-Jun;22(3):e84–7. PubMed PMID: 24067875; eng.
  • Escandon J, Peacock S, Trabolsi A, et al. Interstitial nephritis in melanoma patients secondary to PD-1 checkpoint inhibitor. J Immunother Cancer 2017;5:3. PubMed PMID: 28105370.
  • Shirali AC, Perazella MA, Gettinger S. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients. Am J Kidney Dis. 2016 Aug;68(2):287–291. PubMed PMID: 27113507; eng.
  • Bottlaender L, Breton AL, de Laforcade L, et al. Acute interstitial nephritis after sequential ipilumumab - nivolumab therapy of metastatic melanoma. J Immunother Cancer 2017;5:57. PubMed PMID: 28716106.
  • Koda R, Watanabe H, Tsuchida M, et al. Immune checkpoint inhibitor (nivolumab)-associated kidney injury and the importance of recognizing concomitant medications known to cause acute tubulointerstitial nephritis: a case report. BMC Nephrol. 2018;19(1):48. PubMed PMID: 29486725.
  • Mamlouk O, Selamet U, Machado S, et al. Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience. J Immunother Cancer. 2019 Jan 6;7(1):2. PubMed PMID: 30612580; PubMed Central PMCID: PMCPMC6322290. eng.
  • Izzedine H, Lambotte O, Goujon J-M, et al. Renal toxicities associated with pembrolizumab. Clin Kidney J. 2018;12(1):81–88.
  • Murakami N, Borges TJ, Yamashita M, et al. Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clin Kidney J. 2016 Jun;9(3):411–417. PubMed PMID: 27274826; PubMed Central PMCID: PMCPMC4886917. eng.
  • Sise ME, Seethapathy H, Reynolds KL. Diagnosis and management of immune checkpoint inhibitor‐associated renal toxicity: illustrative case and review. The Oncologist. 2019;24:1–8.
  • Fadel F, Karoui KE, Knebelmann B. Anti-CTLA4 Antibody–induced Lupus Nephritis. N Engl J Med. 2009;3612:211–212. PubMed PMID: 19587352.
  • Kitchlu A, Fingrut W, Avila-Casado C, et al. Nephrotic syndrome with cancer immunotherapies: a report of 2 Cases. Am J Kidney Dis. 2017 Oct;70(4):581–585. PubMed PMID: 28648302; eng.
  • Izzedine H, Mateus C, Boutros C, et al. Renal effects of immune checkpoint inhibitors. Nephrol Dial Transplant. 2017 Jun 1;32(6):936–942. PubMed PMID: 28025384; eng.
  • McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2010 Nov;5(11):2115–2121. PubMed PMID: 20966123; eng.
  • Zhang E, Xu H. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol. 2017 Jan 3;10(1):1. PubMed PMID: 28049484; PubMed Central PMCID: PMCPMC5210295. eng.*.
  • Baxevanis CN, Papamichail M. Targeting of tumor cells by lymphocytes engineered to express chimeric receptor genes. Cancer Immunol Immunother. 2004 Oct;53(10):893–903. PubMed PMID: 15168086; eng.
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507–1517. PubMed PMID: 25317870; PubMed Central PMCID: PMCPMC4267531. eng.
  • Brentjens RJ, Rivière I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817.
  • Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011 Jul 1;17(13):4550–4557. PubMed PMID: 21498393; PubMed Central PMCID: PMCPMC3131487. eng.
  • Besser MJ, Shapira-Frommer R, Treves AJ, et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2010 May 1;16(9):2646–2655. PubMed PMID: 20406835; eng.
  • Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011 Dec 1;118(23):6050–6056. PubMed PMID: 21984804; PubMed Central PMCID: PMCPMC3234664. eng.
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol. 2018 Jan;15(1):47–62. PubMed PMID: 28925994; eng.
  • Teachey DT, Rheingold SR, Maude SL, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013 Jun 27;121(26):5154–5157. PubMed PMID: 23678006; PubMed Central PMCID: PMCPMC4123427. eng.
  • Jhaveri KD, Rosner MH. Chimeric Antigen Receptor T Cell Therapy and the Kidney. Clin J Am Soc Nephrol. 2018;13(5):796.
  • Perazella MA, Shirali AC. Nephrotoxicity of cancer immunotherapies: past, present and future. J Am Soc Nephrol. 2018;29(8):2039.
  • Namuduri M, Brentjens RJ. Medical management of side effects related to CAR T cell therapy in hematologic malignancies. PubMed PMID: 27139507 Expert Rev Hematol. 2016;96:511–513.
  • Kloss CC, Condomines M, Cartellieri M, et al. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–75. PubMed PMID: 23242161; eng.
  • Grada Z, Hegde M, Byrd T, et al. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2013;2(7):e105–e105. PubMed PMID: 23839099; eng.
  • Philip B, Kokalaki E, Mekkaoui L, et al. A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood. 2014;124(8):1277.
  • Minagawa K, Al-Obaidi M, Di Stasi A. Generation of suicide gene-modified chimeric antigen receptor-redirected T-cells for cancer immunotherapy. In: Düzgüneş N, editor. Suicide gene therapy: methods and protocols. New York: Springer New York; 2019. p. 57–73.
  • Srivastava S, Riddell SR. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502. PubMed PMID: 26169254; eng.*.
  • Gomes-Silva D, Ramos CA. Cancer immunotherapy using car-t cells: from the research bench to the assembly line. Biotechnol J. 2018;13(2). PubMed PMID: 28960810; eng. DOI:10.1002/biot.201700097.
  • Kenderian SS, Ruella M, Shestova O, et al. Identification of PD1 and TIM3 as checkpoints that limit chimeric antigen receptor T cell efficacy in leukemia. Blood. 2015;126(23):852.
  • Xu J, Zhang Q, Tian K, et al. Current status and future prospects of the strategy of combining CART with PD1 blockade for antitumor therapy (Review). Mol Med Rep. 2018 Feb;17(2):2083–2088. PubMed PMID: 29207115; eng.
  • Conway JR, Kofman E, Mo SS, et al. Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine. Genome Med. 2018 Nov 29;10(1):93.
  • Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–2940. PubMed PMID: 28650338; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.