686
Views
9
CrossRef citations to date
0
Altmetric
Perspective

Gut microbiota: what is its place in pharmacology?

&
Pages 921-930 | Received 17 May 2019, Accepted 17 Sep 2019, Published online: 29 Sep 2019

References

  • Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota. World J Gastroenterol. 2015 Aug;21(29):8787–8803.
  • Libudzisz Z, “Małgorzata lewandowska microbiota of human gastrointestinal tract,” 1081.
  • Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836.
  • Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014 Sep;38(5):996–1047.
  • Li H, He J, Jia W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol. 2016 Jan;12(1):31–40.
  • Dieterich W, Schink M, Zopf Y. Microbiota in the gastrointestinal tract. Med Sci (Basel, Switzerland). 2018 Dec;6(4):116.
  • Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014 Jun;49(6):681–689.
  • Gavini F, Cayuela, C, Antoine, JM, et al. Differences in the distribution of bifidobacterial and enterobacterial species in human faecal microflora of three different (children, adults, elderly) age groups. Microb Ecol Health Dis. 2001 Jan;13(1):40–45.
  • Hopkins MJ, Sharp R, Macfarlane GT. Variation in human intestinal microbiota with age. Dig Liver Dis. 2002 Sep;34(2):S12–8.
  • Nagpal R, Mainali R, Ahmadi S, et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr Health Aging. 2018 Jun;4(4):267–285.
  • Choi J, Hur T-Y, Hong Y. Influence of altered gut microbiota composition on aging and aging-related diseases. J Lifestyle Med. 2018 Jan;8(1):1–7.
  • Bibbò S, Ianiro G, Giorgio V, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20(22):4742–4749.
  • Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal physiology and function. In: Greenwood-Van Meerveld B, editor. Handbook of experimental pharmacology. Cham: Springer. Vol. 239. 2017. p. 1–16.
  • Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016 Jan;164(3):337–340.
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016 Aug;14(8):e1002533.
  • Zuo T, Ng SC. The gut microbiota in the pathogenesis and therapeutics of inflammatory bowel disease. Front Microbiol. 2018 Sep;9:2247.
  • Al-Assal K, Martinez AC, Torrinhas RS, et al. Gut microbiota and obesity. Clin Nutr Exp. 2018 Aug;20:60–64.
  • Pascal M, Perez-Gordo M, Caballero T, et al. Microbiome and allergic diseases. Front Immunol. 2018;9:1584.
  • Helmink BA, Khan MAW, Hermann A, et al. The microbiome, cancer, and cancer therapy. Nat Med. 2019 Mar;25(3):377–388.
  • Stewart CJ, Chown SL, DeConto RM, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018 Oct;562(7728):583–588.
  • Walker RW, Clemente JC, Peter I, et al. The prenatal gut microbiome: are we colonized with bacteria in utero ? Pediatr Obes. 2017 Aug;12:3–17.
  • Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, et al. A critical assessment of the ‘sterile womb’ and ‘in utero colonization’ hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017 Dec;5(1):48.
  • Barko PC, McMichael MA, Swanson KS, et al. The Gastrointestinal microbiome: a review. J Vet Intern Med. 2018 Jan;32(1):9–25.
  • Blackwell M. The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot. 2011 Mar;98(3):426–438.
  • Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017 Nov;5(1):153.
  • Forbes JD, Bernstein CN, Tremlett H, et al. A fungal world: could the gut mycobiome be involved in neurological disease? Front Microbiol. 2018;9:3249.
  • Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017 Mar;9(380):eaaf9044.
  • Gaitanis G, Magiatis P, Stathopoulou K, et al. AhR ligands, malassezin, and indolo[3,2-b]carbazole are selectively produced by malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol. 2008 Jul;128(7):1620–1625.
  • Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal Immunol. 2018 Jul;11(4):1024–1038.
  • Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. Wiley Interdiscip Rev Syst Biol Med. 2019 Jan;11(1):e1438.
  • Velegraki A, Cafarchia C, Gaitanis G, et al. malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathog. 2015 Jan;11(1):e1004523.
  • Mukhopadhya I, Segal JP, Carding SR, et al. The gut virome: the ‘missing link’ between gut bacteria and host immunity? Therap Adv Gastroenterol. 2019 Jan;12:175628481983662.
  • Ash C. Revelation in the gut virome. Science. 2018 Dec;362(6421):1373.4–1374.
  • Neil JA, Cadwell K. The Intestinal Virome and Immunity. J Immunol. 2018 Sep;201(6):1615–1624.
  • Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012 Sep;489(7415):242–249.
  • Robles Alonso V, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013 Jan;109(S2):S21–S26.
  • Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859–904.
  • Den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013 Sep;54(9):2325–2340.
  • Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb. 2017 Jul;24(7):660–672.
  • Ratajczak W, Rył A, Mizerski A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019 Mar.
  • Rowland I, Gibson, G, Heinken, A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018 Feb;57(1):1–24.
  • Ma J, Rubin BK, Voynow JA. Mucins, mucus, and goblet cells. Chest. 2018 Jul:154(1):169–176.
  • Sicard J-F, Le Bihan G, Vogeleer P, et al. Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol. 2017;7:387.
  • Corfield AP. the interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms. 2018 Aug;6(3):78.
  • Purchiaroni F, Tortora, A, Gabrielli, M et al. The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci. 2013 Feb;17(3):323–333.
  • Hibbing ME, Fuqua C, Parsek MR, et al. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010 Jan;8(1):15–25.
  • Cianci R, Pagliari D, Piccirillo CA, et al. the microbiota and immune system crosstalk in health and disease. Mediators Inflamm. 2018;2018:1–3.
  • Pagliari D, Piccirillo CA, Larbi A, et al. The Interactions between innate immunity and microbiota in gastrointestinal diseases. J Immunol Res. 2015 May;2015:1–3.
  • Stanley LA. Drug metabolism. Pharmacognosy. 2017 Jan. Chapter 27 - Drug Metabolism forom the book Pharmacognosy Fundamentals, Applications and Strategies; p. 527–545.
  • Kim D-H. Gut microbiota-mediated drug-antibiotic interactions. Drug Metab Dispos. 2015 Sep;43(10):1581–1589.
  • Swanson HI. Drug metabolism by the host and gut microbiota: A partnership or rivalry? Drug Metab Dispos. 2015 Oct;43(10):1499–1504.
  • Yoo D-H, Kim IS, Van Le TK, et al. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab Dispos. 2014 Aug;42(9):1508–1513.
  • Spanogiannopoulos P, Bess EN, Carmody RN, et al. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016 May;14(5):273–287.
  • Yip LY, Chun E, Chan Y. Special section on drug metabolism and the microbiome-minireview investigation of host-gut microbiota modulation of therapeutic outcome. Drug Metab Dispos. 2015;43:1619–1631.
  • Sousa T, Paterson R, Moore V, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm. 2008 Nov;363(1–2):1–25.
  • Haiser HJ, Gootenberg DB, Chatman K, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013 Jul;341(6143):295–298.
  • Saha JR, Butler VP, Neu HC, et al. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983 Apr;220(4594):325–327.
  • Haiser HJ, Seim KL, Balskus EP, et al. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 2014;5(2):233–238.
  • Clark DR, Kalman SM. Dihydrodigoxin: a common metabolite of digoxin in man. Drug Metab Dispos. 1974;2(2):148-150.
  • Makiyama A, Arimizu K, Hirano G, et al. Irinotecan monotherapy as third-line or later treatment in advanced gastric cancer. Gastric Cancer. 2018 May;21(3):464–472.
  • Nielsen DL, Palshof J, Brünner N, et al. Implications of ABCG2 expression on irinotecan treatment of colorectal cancer patients: a review. Int J Mol Sci. 2017 Sep;18(9):1926.
  • Hahn RZ, Arnhold, PC, Andriguetti, NB, et al. Determination of irinotecan and its metabolite SN-38 in dried blood spots using high-performance liquid-chromatography with fluorescence detection. J Pharm Biomed Anal. 2018;150:51–58.
  • Basu S, Zeng M, Yin T, et al. Development and validation of an UPLC–MS/MS method for the quantification of irinotecan, SN-38 and SN-38 glucuronide in plasma, urine, feces, liver and kidney: application to a pharmacokinetic study of irinotecan in rats. J Chromatogr B. 2016 Mar;1015–1016:34–41.
  • Atasilp C, Chansriwong P, Sirachainan E, et al. Determination of irinotecan, SN-38 and SN-38 glucuronide using HPLC/MS/MS: application in a clinical pharmacokinetic and personalized medicine in colorectal cancer patients. J Clin Lab Anal. 2018 Jan;32(1):e22217.
  • Guthrie L, Gupta S, Daily J, et al. Human microbiome signatures of differential colorectal cancer drug metabolism. Npj Biofilms Microbiomes. 2017 Dec;3(1):27.
  • Davis CD, Milner JA. Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem. 2009 Oct;20(10):743–752.
  • Sjoukes A, Venekamp, RP, van de Pol, AC, et al. Paracetamol (acetaminophen) or non-steroidal anti-inflammatory drugs, alone or combined, for pain relief in acute otitis media in children. Cochrane Database Syst Rev. 2016;12(12):CD011534.
  • Ohlsson A, Shah PS. Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev. 2018;4(4):CD010061.
  • Meremikwu MM, Oyo-Ita A. Paracetamol versus placebo or physical methods for treating fever in children. Cochrane Database Syst Rev. 2002 Apr.
  • Chiew AL, Gluud C, Brok J, et al. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev. 2018;2(2):CD003328.
  • Klaassen CD, Cui JY. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos. 2015 Oct;43(10):1505–1521.
  • Forrest JAH, Clements JA, Prescott LF. Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet. 1982;7(2):93–107.
  • Prescott LF. Kinetics and metabolism of paracetamol and phenacetin. Br J Clin Pharmacol. 1980 Oct;10(2):291S–298S.
  • Clayton TA, Baker D, Lindon JC, et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci. 2009 Aug;106(34):14728–14733.
  • Zimmermann P, Curtis N. The effect of aspirin on antibiotic susceptibility. Expert Opin Ther Targets. 2018 Nov;22(11):967–972.
  • Kim IS, Yoo D-H, Jung I-H, et al. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem Pharmacol. 2016;122:72–79.
  • Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science. 2019 Feb;363(6427):eaat9931.
  • Markowiak P, Śliżewska K. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 2018;10:21.
  • Gong J, Chehrazi-Raffle A, Placencio-Hickok V, et al. The gut microbiome and response to immune checkpoint inhibitors: preclinical and clinical strategies. Clin Transl Med. 2019 Mar;8(1):9.
  • Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016 Oct;78(4):661–671.
  • Viaud S, Daillère R, Boneca IG, et al. Gut microbiome and anticancer immune response: really hot Sh*t!. Cell Death Differ. 2015 Feb;22(2):199–214.
  • Liu Y, Tang H, Liu Y, et al. gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front Microbiol. 2018;9:530.
  • Matthies A, Clavel T, Gutschow M, et al. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol. 2008 Aug;74(15):4847–4852.
  • Schneider H, Simmering R, Hartmann L, et al. Degradation of quercetin-3-glucoside in gnotobiotic rats associated with human intestinal bacteria. J Appl Microbiol. 2000 Dec;89(6):1027–1037.
  • Shim S-B, Kim N-J, Kim D-H. β-glucuronidase inhibitory activity and hepatoprotective effect of 18β-glycyrrhetinic acid from the rhizomes of glycyrrhiza uralensis. Planta Med. 2000 Feb;66(1):40–43.
  • Akao T, Beylin I, Sluzky V, et al. Intestinal bacterial hydrolysis is indispensable to absorption of 18 beta-glycyrrhetic acid after oral administration of glycyrrhizin in rats. J Pharm Pharmacol. 1994 Feb;46(2):135–137.
  • Matthies A, Loh G, Blaut M, et al. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr. 2012 Jan;142(1):40–46.
  • Akao T, Kida H, Kanaoka M, et al. drug metabolism: intestinal bacterial hydrolysis is required for the appearance of compound k in rat plasma after oral administration of ginsenoside Rb1 from panax ginseng. J Pharm Pharmacol. 1998 Oct;50(10):1155–1160.
  • Watanabe K, Yamashita S, Furuno K, et al. Metabolism of omeprazole by gut flora in rats. J Pharm Sci. 1995 Apr;84(4):516–517.
  • Caldwell J, Hawksworth GM. The demethylation of methamphetamine by intestinal microflora. J Pharm Pharmacol. 1973 May;25(5):422–424.
  • Shu Y-Z, Kingston DGI, Van Tassell RL, et al. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica. 1991 Jan;21(6):737–750.
  • Mikov M, Caldwell J, Dolphin CT, et al. The role of intestinal microflora in the formation of the methylthio adduct metabolites of paracetamol. Studies in neomycin-pretreated and germ-free mice. Biochem Pharmacol. 1988 Apr;37(8):1445–1449.
  • Lindenbaum J, Rund DG, Butler VP, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med. 1981 Oct;305(14):789–794.
  • Renouf M, Hendrich S. Bacteroides uniformis is a putative bacterial species associated with the degradation of the isoflavone genistein in human feces. J Nutr. 2011 Jun;141(6):1120–1126.
  • Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas. 2017 Sep;103:45–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.