342
Views
5
CrossRef citations to date
0
Altmetric
Review

Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development

ORCID Icon, , &
Pages 1001-1046 | Received 17 Jun 2020, Accepted 21 Aug 2020, Published online: 29 Sep 2020

References

  • Gottlieb SL, Low N, Newman LM, et al. Toward global prevention of sexually transmitted infections (STIs): The need for STI vaccines. Vaccine. 2014;32(14):1527–1535.
  • Kumamoto Y, Iwasaki A. Unique features of antiviral immune system of the vaginal mucosa. Curr Opin Immunol. 2012;24(4):411–416.
  • Mayaud P, McCartney D, Mabey D. Hunter’s Tropical medicine and emerging infectious diseases. In: Sexually transmitted infections. Ryan ET, Hill DR, Endy TP, editors. Elsevier; 2020. p. 52–68.
  • Misra A, Thippeshappa R, Kimata JT. Macaques as model hosts for studies of HIV-1 infection. Front Microbiol. 2013;4:176.
  • Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee pan troglodytes. Nature. 1999;397(6718):436–441.
  • Wertheim JO, Smith MD, Smith DM, et al. Evolutionary origins of human herpes simplex viruses 1 and 2. Mol Biol Evol. 2014;31(9):2356–2364.
  • Yang C, Ruan P, Ou C, et al. Chronic hepatitis B virus infection and occurrence of hepatocellular carcinoma in tree shrews (Tupaia belangeri chinensis). Virol J. 2015;12(1):26.
  • Wieland SF. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med. 2015;5(6):a021469.
  • Tang H, Oishi N, Kaneko S, et al. Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci. 2006;97(10):977–983.
  • Faridi R, Zahra A, Khan K, et al. Oncogenic potential of Human Papillomavirus (HPV) and its relation with cervical cancer. Virol J. 2011;8(1):269.
  • Rimsky L, Hauber J, Dukovich M, et al. Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein. Nature. 1988;335(6192):738–740.
  • Nicot C. Overview on HTLV-1 p12, p8, p30, p13: Accomplices in persistent infection and viral pathogenesis. Front Microbiol. 2012;3:400.
  • Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol. 2020;119:106–122.
  • Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One. 2019;14(10):e0223844.
  • Bolhassani A, Kardani K, Vahabpour R, et al. Prime/boost immunization with HIV-1 MPER-V3 fusion construct enhances humoral and cellular immune responses. Immunol Lett. 2015;168(2):366–373.
  • Dolan A, Jamieson FE, Cunningham C, et al. The genome sequence of herpes simplex virus type 2. J Virol. 1998;72(3):2010–2021.
  • Lindenbach BD, Rice CM. Unravelling hepatitis C virus replication from genome to function. Nature. 2005;436(7053):933–938.
  • Alexopoulou A, Karayiannis P. HBeAg negative variants and their role in the natural history of chronic hepatitis B virus infection. World J Gastroenterol. 2014;20(24):7644.
  • Kardani K, Bolhassani A. HPV proteins and their functions. HPV Infect. 2018;1:8.
  • Liu MA. DNA vaccines: A review. J Intern Med. 2003;253(4):402–410.
  • Saroja CH, Lakshmi PK, Bhaskaran S. Recent trends in vaccine delivery systems: A review. Int J Pharm. 2011;1(2):64.
  • Karimkhanilouyi S, Ghorbian S. Nucleic acid vaccines for hepatitis B and C virus. Infect Genet Evol. 2019;75:103968.
  • Schiller JT, Lowy DR. Immunogenicity testing in human papillomavirus virus-like-particle vaccine trials. J Infect Dis. 2009;200(2):166–171.
  • Dai S, Wang H, Deng F. Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J Immunol Sci. 2018;2(2):36–41.
  • Grgacic EV, Anderson DA. Virus-like particles: Passport to immune recognition. Methods. 2006;40(1):60–65.
  • Ober BT, Brühl P, Schmidt M, et al. Immunogenicity and safety of defective vaccinia virus lister: Comparison with modified vaccinia virus Ankara. J Virol. 2002;76(15):7713–7723.
  • Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel). 2014;2(3):624–641.
  • Hanabuchi S, Ohashi T, Koya Y, et al. Regression of human T-cell leukemia virus type I (HTLV-I)-associated lymphomas in a rat model: Peptide-induced T-cell immunity. J Natl Cancer Inst. 2001;93(23):1775–1783.
  • Ando S, Hasegawa A, Murakami Y, et al. HTLV-1 Tax-specific CTL epitope-pulsed dendritic cell therapy reduces proviral load in infected rats with immune tolerance against Tax. J Immunol. 2017;198(3):1210–1219.
  • Hoshino Y, Dalai SK, Wang K, et al. Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs. J Virol. 2005;79(1):410–418.
  • Brans R, Akhrameyeva NV, Yao F. Prevention of genital herpes simplex virus type 1 and 2 disease in mice immunized with a gD-expressing dominant-negative recombinant HSV-1. J Invest Dermatol. 2009;129(10):2470–2479.
  • Prichard MN, Kaiwar R, Jackman WT, et al. Evaluation of AD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs. Vaccine. 2005;23(46–47):5424–5431.
  • Jin Y, Cao C, Li P, et al. Boosting immune response to hepatitis B DNA vaccine by coadministration of Prothymosin α-expressing plasmid. Clin Diagn Lab Immunol. 2005;12(12):1364–1369.
  • Chen H, Wen B, Deng Y, et al. Enhanced effect of DNA immunization plus in vivo electroporation with a combination of hepatitis B virus core-PreS1 and S-PreS1 plasmids. Clin Vaccine Immunol. 2011;18(11):1789–1795.
  • Villarreal DO, Wise MC, Siefert RJ, et al. Ubiquitin-like molecule ISG15 acts as an immune adjuvant to enhance antigen-specific CD8 T-cell tumor immunity. Mol Ther. 2015;23(10):1653–1662.
  • Morello CS, Kraynyak KA, Levinson MS, et al. Inactivated HSV-2 in MPL/alum adjuvant provides nearly complete protection against genital infection and shedding following long term challenge and rechallenge. Vaccine. 2012;30(46):6541–6550.
  • Namvar A, Bolhassani A, Javadi G, et al. In silico/In vivo analysis of high-risk papillomavirus L1 and L2 conserved sequences for development of cross-subtype prophylactic vaccine. Sci Rep. 2019;9(1):1–22.
  • Johnson RP. Live attenuated AIDS vaccines: Hazards and hopes. Nat Med. 1999;5(2):154–155.
  • Li W, Joshi MD, Singhania S, et al. Peptide vaccine: Progress and challenges. Vaccines (Basel). 2014;2(3):515–536.
  • Zhao H, Zhou X, Zhou YH. Hepatitis B vaccine development and implementation. Hum Vaccin Immunother. 2020;15:1–2.
  • Jama NJ. A two-dose Hepatitis B vaccine for adults (heplisav-B). JAMA. 2018;319:822–823.
  • Christianson MS, Wodi P, Talaat K, et al. Primary ovarian insufficiency and human papilloma virus vaccines: A review of the current evidence. Am J Obstet Gynecol. 2020;222(3):239–244.
  • Eisinger RW, Erbelding E, Fauci AS. Refocusing research on sexually transmitted infections. J Infect Dis. 2019;jiz442. DOI:https://doi.org/10.1093/infdis/jiz442.
  • Burm R, Collignon L, Mesalam AA, et al. Animal models to study hepatitis C virus infection. Front Immunol. 2018;9:1032.
  • Bubenik J. Animal models for development of therapeutic HPV16 vaccines (review).. Int J Oncol. 2002;20(1):207–212.
  • Desrosiers RC, Letvin NL. Animal models for acquired immunodeficiency syndrome. Rev Infect Dis. 1987;9(3):438–446.
  • Kwant-Mitchell A, Ashkar AA, Rosenthal KL. Mucosal innate and adaptive immune responses against herpes simplex virus type 2 in a humanized mouse model. J Virol. 2009;83(20):10664–10676.
  • Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene. 2005;24(39):6005–6015.
  • Vercauteren K, de Jong YP, Meuleman P. Animal models for the study of HCV. Curr Opin Virol. 2015;13:67–74.
  • Gao F, Bailes E, Robertson DL, et al. Origin of HIV-1 in the chimpanzee pan troglodytes troglodytes. Nature. 1999;397(6718):436–441.
  • Buitrago-Pérez Á, Hachimi M, Dueñas M, et al. A humanized mouse model of HPV-associated pathology driven by E7 expression. PLoS One. 2012;7(7):e41743.
  • Guo WN, Zhu B, Ai L, et al. Animal models for the study of hepatitis B virus infection. Zool Res. 2018;39(1):25.
  • Vajdi A, Juher D, Saldaña J, et al. A multilayer temporal network model for StD spreading accounting for permanent and casual partners. Sci Rep. 2020;10(1):1–2.
  • Afonso PV, Cassar O, Gessain A. Molecular epidemiology, genetic variability and evolution of HTLV-1 with special emphasis on African genotypes. Retrovirology. 2019;16(1):39.
  • Futsch N, Mahieux R, Dutartre H. HTLV-1, the other pathogenic yet neglected human retrovirus: From transmission to therapeutic treatment. Viruses. 2018;10(1):1.
  • Chandra J, Woo WP, Dutton JL, et al. Immune responses to a HSV-2 polynucleotide immunotherapy COR-1 in HSV-2 positive subjects: A randomized double blinded phase I/IIa trial. PLoS One. 2019;14(12):e0226320.
  • Barnabas VR, Celum C. Infectious co-factors in HIV-1 transmission herpes simplex virus type-2 and HIV-1: New insights and interventions. Curr HIV Res. 2012;10(3):228–237.
  • Petruzziello A, Marigliano S, Loquercio G, et al. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22(34):7824.
  • Nijmeijer BM, Koopsen J, Schinkel J, et al. Sexually transmitted hepatitis C virus infections: Current trends, and recent advances in understanding the spread in men who have sex with men. J Int AIDS Soc. 2019;22(S6):e25348.
  • WHO. Global Hepatitis Report, 2017. Online at: http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/(2017).
  • Pileggi C, Papadopoli R, Bianco A, et al. Hepatitis B vaccine and the need for a booster dose after primary vaccination. Vaccine. 2017;35(46):6302–6307.
  • World Health Organization. Fact sheets. Hepatitis B. 18 July 2019.
  • De Oliveira CM, Fregnani JH, Villa LL, et al. Updates and Highlights. Acta Cytol. 2019;63(2):159–168.
  • Wiyeh AB, Mome RK, Mahasha PW, et al. Effectiveness of the female condom in preventing HIV and sexually transmitted infections: A systematic review and meta-analysis. BMC Public Health. 2020;20(1):1–7.
  • Cox AL, El-Sayed MH, Kao JH, et al. Progress towards elimination goals for viral hepatitis. Nat Rev Gastroenterol Hepatol. 2020;17:533–542.
  • Zhang LL, Wei JY, Wang L, et al. Human T-cell lymphotropic virus type 1 and its oncogenesis. Acta Pharmacol Sin. 2017;38(8):1093–1103.
  • Pilotti E, Bianchi V, De Maria A, et al. HTLV-1/-2 and HIV-1 co-infections: Retroviral interference on host immune status. Front Microbiol. 2013;4:372.
  • Chang CC, Crane M, Zhou J, et al. HIV and co-infections. Immunol Rev. 2013;254:114–142.
  • Sheth PM, Sunderji S, Shin LY, et al. Coinfection with herpes simplex virus type 2 is associated with reduced HIV-specific T cell responses and systemic immune activation. J Infect Dis. 2008;197(10):1394–1401.
  • Zheng YX, Ma SJ, Xiong YH, et al. The efficacy and safety of direct-acting antiviral regimens for HCV/HIV Co-infection: A systematic review and network meta-analysis. J Gastroenterol Hepatol. 2020. DOI:https://doi.org/10.1111/jgh.15051.
  • Singh KP, Crane M, Audsley J, et al. HIV-hepatitis B virus co-infection: Epidemiology, pathogenesis and treatment. AIDS. 2017;31(15):2035.
  • Okwen MP, Reid S, Njei B, et al. Hepatitis B vaccination for reducing morbidity and mortality in persons with HIV infection. Cochrane Database Syst Rev. 2014;(10). doi:https://doi.org/10.1002/14651858.CD009886.pub2.
  • Tumban E. A current update on human papillomavirus-associated head and neck cancers. Viruses. 2019;11(10):922.
  • Poiesz BJ, Ruscetti FW, Gazdar AF, et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci. 1980;77(12):7415–7419.
  • Quaresma JA, Yoshikawa GT, Koyama RV, et al. HTLV-1, immune response and autoimmunity. Viruses. 2016;8(1):5.
  • Martin JL, Maldonado JO, Mueller JD, et al. Molecular studies of HTLV-1 replication: An update. Viruses. 2016;8(2):31.
  • Kalyanaraman VS, Sarngadharan MG, Robert-Guroff M, et al. A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science. 1982;218(4572):571–573.
  • Tagaya Y, Matsuoka M, Gallo R. 40 years of the human T-cell leukemia virus: Past, present, and future. F1000Res. 2019;8:228.
  • Einsiedel L, Spelman T, Goeman E, et al. Clinical associations of Human T-Lymphotropic Virus type 1 infection in an indigenous Australian population. PLoS Negl Trop Dis. 2014;8(1):e2643.
  • Soltani A, Hashemy SI, Avval FZ, et al. Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother. 2019;109:770–778.
  • Manel N, Kim FJ, Kinet S, et al. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell. 2003 Nov 14;115(4):449–459.
  • Jones KS, Petrow-Sadowski C, Bertolette DC, et al. Heparan sulfate proteoglycans mediate attachment and entry of human T-cell leukemia virus type 1 virions into CD4+ T cells. J Virol. 2005;79(20):12692–12702.
  • Ghez D, Lepelletier Y, Lambert S, et al. Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. J Virol. 2006;80(14):6844–6854.
  • Yoshimitsu M, Kozako T, Arima N. Prevention of human T-cell lymphotropic virus infection and adult T-cell leukemia. InT-Cell Leukemia-Characteristics, Treatment and Prevention. IntechOpen. 2013.
  • Sugata K, Yasunaga JI, Mitobe Y, et al. Protective effect of cytotoxic T lymphocytes targeting HTLV-1 bZIP factor. Blood. 2015;126(9):1095–1105.
  • Sundaram R, Sun Y, Walker CM, et al. A novel multivalent human CTL peptide construct elicits robust cellular immune responses in HLA-A* 0201 transgenic mice: Implications for HTLV-1 vaccine design. Vaccine. 2003;21(21–22):2767–2781.
  • Mulherkar R, Karabudak A, Ginwala R, et al. In vivo and in vitro immunogenicity of novel MHC class I presented epitopes to confer protective immunity against chronic HTLV-1 infection. Vaccine. 2018;36(33):5046–5057.
  • Kozako T, Fukada K, Hirata S, et al. Efficient induction of human T-cell leukemia virus-1-specific CTL by chimeric particle without adjuvant as a prophylactic for adult T-cell leukemia. Mol Immunol. 2009;47(2–3):606–613.
  • Munson P, Liu Y, Bratt D, et al. Therapeutic conserved elements (CE) DNA vaccine induces strong T-cell responses against highly conserved viral sequences during simian-human immunodeficiency virus infection. Hum Vaccin Immunother. 2018;14(7):1820–1831.
  • Cui Z, Patel J, Tuzova M, et al. Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine. 2004 Jun 30;22(20):2631–2640.
  • Kardani K, Bolhassani A, Agi E, et al. B1 protein: A novel cell penetrating protein for in vitro and in vivo delivery of HIV-1 multi-epitope DNA constructs. Biotechnol Lett. 2020;42(10):1847–1863.
  • Rostami B, Irani S, Bolhassani A, et al. Gene and protein delivery using four cell penetrating peptides for HIV-1 vaccine development. IUBMB Life. 2019;71(10):1619–1633.
  • Kadkhodayan S, Jafarzade BS, Sadat SM, et al. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett. 2017;188:38–45.
  • Abaitua F, Rodríguez JR, Garzón A, et al. Improving recombinant MVA immune responses: Potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-gamma. Virus Res. 2006;116(1–2):11–20.
  • Brans R, Yao F. Immunization with a dominant-negative recombinant Herpes Simplex Virus (HSV) type 1 protects against HSV-2 genital disease in guinea pigs. BMC Microbiol. 2010;10(1):163.
  • Vagvala SP, Thebeau LG, Wilson SR, et al. Virus-encoded b7-2 costimulation molecules enhance the protective capacity of a replication-defective herpes simplex virus type 2 vaccine in immunocompetent mice. J Virol. 2009;83(2):953–960.
  • Awasthi S, Lubinski JM, Shaw CE, et al. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol. 2011;85(20):10472–10486.
  • Morello CS, Levinson MS, Kraynyak KA, et al. Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease. J Virol. 2011;85(7):3461–3472.
  • Halford WP, Püschel R, Gershburg E, et al. A live-attenuated HSV-2 ICP0-virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS One. 2011;6(3):e17748.
  • Pishraft-Sabet L, Kosinska AD, Rafati S, et al. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96. Arch Virol. 2015;160(1):141–152.
  • Huang XJ, Lü X, Lei YF, et al. Cellular immunogenicity of a multi-epitope peptide vaccine candidate based on hepatitis C virus NS5A, NS4B and core proteins in HHD-2 mice. J Virol Methods. 2013;189(1):47–52.
  • Woo PC, Wong LP, Zheng BJ, et al. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium. Vaccine. 2001;19(20–22):2945–2954.
  • Kosinska AD, Zhang E, Johrden L, et al. Combination of DNA prime-adenovirus boost immunization with entecavir elicits sustained control of chronic hepatitis B in the woodchuck model. PLoS Pathog. 2013;9(6):e1003391.
  • Gableh F, Saeidi M, Hemati S, et al. Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23(1):16.
  • Ahrends T, Bąbała N, Xiao Y, et al. CD27 agonism plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res. 2016;76(10):2921–2931.
  • Diniz MO, Sales NS, Silva JR, et al. Protection against HPV-16-associated tumors requires the activation of CD8+ effector memory T cells and the control of myeloid-derived suppressor cells. Mol Cancer Ther. 2016;15(8):1920–1930.
  • Allen A, Wang C, Caproni LJ, et al. Linear doggybone DNA vaccine induces similar immunological responses to conventional plasmid DNA independently of immune recognition by TLR9 in a pre-clinical model. Cancer Immunol Immunother. 2018;67(4):627–638.
  • Talebi S, Bolhassani A, Sadat SM, et al. Hp91 immunoadjuvant: An HMGB1-derived peptide for development of therapeutic HPV vaccines. Biomed Pharmacother. 2017;85:148–154.
  • Mardani G, Bolhassani A, Agi E, et al. Protein vaccination with HPV16 E7/Pep-1 nanoparticles elicits a protective T-helper cell-mediated immune response. IUBMB Life. 2016;68(6):459–467.
  • Namvar A, Panahi HA, Agi E, et al. Development of HPV 16, 18, 31, 45 E5 and E7 peptides-based vaccines predicted by immunoinformatics tools. Biotechnol Lett. 2020;42(3):403–418.
  • Shahbazi S, Bolhassani A. Comparison of six cell penetrating peptides with different properties for in vitro and in vivo delivery of HPV16 E7 antigen in therapeutic vaccines. Int Immunopharmacol. 2018;62:170–180.
  • Kabiri M, Sankian M, Hosseinpour M, et al. The novel immunogenic chimeric peptide vaccine to elicit potent cellular and mucosal immune responses against HTLV-1. Int J Pharm. 2018;549(1–2):404–414.
  • Kozako T, Hirata S, Shimizu Y, et al. Oligomannose-coated liposomes efficiently induce human T-cell leukemia virus-1-specific cytotoxic T lymphocytes without adjuvant. Febs J. 2011;278(8):1358–1366.
  • Kazanji M, Heraud JM, Merien F, et al. Chimeric peptide vaccine composed of B-and T-cell epitopes of human T-cell leukemia virus type 1 induces humoral and cellular immune responses and reduces the proviral load in immunized squirrel monkeys (Saimiri sciureus). J Gen Virol. 2006;87(5):1331–1337.
  • Frangione-Beebe M, Albrecht B, Dakappagari N, et al. Enhanced immunogenicity of a conformational epitope of human T-lymphotropic virus type 1 using a novel chimeric peptide. Vaccine. 2000;19(9–10):1068–1081.
  • Ohashi T, Hanabuchi S, Kato H, et al. Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus type 1 Tax-coding DNA vaccine. J Virol. 2000;74(20):9610–9616.
  • Sarkar S, Piepenbrink MS, Basu M, et al. IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine. 2019;37(17):2322–2330.
  • Billaut-Mulot O, Idziorek T, Ban E, et al. Interleukin-18 modulates immune responses induced by HIV-1 Nef DNA prime/protein boost vaccine. Vaccine. 2000;19(1):95–102.
  • Jones AT, Chamcha V, Kesavardhana S, et al. A trimeric HIV-1 envelope gp120 immunogen induces potent and broad anti-V1V2 loop antibodies against HIV-1 in rabbits and rhesus macaques. J Virol. 2018;92(5):e01796–17.
  • García-Arriaza J, Gómez CE, Sorzano CÓ, et al. Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens. J Virol. 2014;88(6):3392–3410.
  • Tohidi F, Sadat SM, Bolhassani A, et al. Induction of a robust humoral response using HIV-1 VLP MPER-V3 as a novel candidate vaccine in BALB/C mice. Curr HIV Res. 2019;17(1):33–41.
  • Wang K, Kappel JD, Canders C, et al. A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM. J Virol. 2012;86(23):12891–12902.
  • Petro C, Gonzalez PA, Cheshenko N, et al. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. Elife. 2015;4:e06054.
  • Shlapobersky M, Marshak JO, Dong L, et al. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol. 2012;93(6):1305.
  • Frey SE, Houghton M, Coates S, et al. Safety and immunogenicity of HCV E1E2 vaccine adjuvanted with MF59 administered to healthy adults. Vaccine. 2010;28(38):6367–6373.
  • Stamataki Z, Coates S, Abrignani S, et al. Immunization of human volunteers with hepatitis C virus envelope glycoproteins elicits antibodies that cross-neutralize heterologous virus strains. J Infect Dis. 2011;204(5):811–813.
  • Folgori A, Capone S, Ruggeri L, et al. A T-cell HCV vaccine eliciting effective immunity against heterologous virus challenge in chimpanzees. Nat Med. 2006;12(2):190–197.
  • Youn JW, Park SH, Lavillette D, et al. Sustained E2 antibody response correlates with reduced peak viremia after hepatitis C virus infection in the chimpanzee. Hepatology. 2005;42(6):1429–1436.
  • Lee H, Jeong M, Oh J, et al. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of hepatitis C virus infection. Sci Rep. 2017;7(1):43531.
  • Latimer B, Toporovski R, Yan J, et al. Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype 1a/1b consensus DNA vaccine. Hum Vaccin Immunother. 2014;10(8):2357–2365.
  • Youn JW, Hu YW, Tricoche N, et al. Evidence for protection against chronic hepatitis C virus infection in chimpanzees by immunization with replicating recombinant vaccinia virus. J Virol. 2008;82(21):10896–10905.
  • Rollier CS, Paranhos-Baccala G, Verschoor EJ, et al. Vaccine-induced early control of hepatitis C virus infection in chimpanzees fails to impact on hepatic PD-1 and chronicity. Hepatology. 2007;45(3):602–613.
  • Shirbaghaee Z, Bolhassani A, Mirshafiey A, et al. A Live Vector expressing HPV16 L1 generates an adjuvant-induced antibody response in vivo. Iran J Cancer Prev. 2015;8(6). DOI:https://doi.org/10.17795/ijcp-3991.
  • Lisziewicz J, Bakare N, Calarota SA, et al. Single DermaVir immunization: Dose-dependent expansion of precursor/memory T cells against all HIV antigens in HIV-1 infected individuals. PLoS One. 2012;7(5):e35416.
  • Rodriguez B, Asmuth DM, Matining RM, et al. Safety, tolerability and immunogenicity of repeated doses of DermaVir, a candidate therapeutic HIV vaccine, in HIV infected patients receiving combination antiretroviral therapy: Results of the ACTG 5176 Trial. J Acquir Immune Defic Syndr. 2013;64(4):351–359.
  • Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68(7):4650–4655.
  • Sneller MC, Justement JS, Gittens KR, et al. A randomized controlled safety/efficacy trial of therapeutic vaccination in HIV-infected individuals who initiated antiretroviral therapy early in infection. Sci Transl Med. 2017;9(419):eaan8848.
  • Leal L, Guardo AC, Morón-López S, et al. Phase I clinical trial of an intranodally administered mRNA-based therapeutic vaccine against HIV-1 infection. AIDS. 2018;32(17):2533.
  • Pollard RB, Rockstroh JK, Pantaleo G, et al. Safety and efficacy of the peptide-based therapeutic vaccine for HIV-1, Vacc-4×: A phase 2 randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2014;14(4):291–300.
  • Brekke K, Sommerfelt M, Ökvist M, et al. The therapeutic HIV Env C5/gp41 vaccine candidate Vacc-C5 induces specific T cell regulation in a phase I/II clinical study. BMC Infect Dis. 2017;17(1):228.
  • Román VR, Jensen KJ, Jensen SS, et al. Therapeutic vaccination using cationic liposome-adjuvanted HIV type 1 peptides representing HLA-supertype-restricted subdominant T cell epitopes: Safety, immunogenicity, and feasibility in Guinea-Bissau. AIDS Res Hum Retroviruses. 2013;29(11):1504–1512.
  • Karlsson I, Brandt L, Vinner L, et al. Adjuvanted HLA-supertype restricted subdominant peptides induce new T-cell immunity during untreated HIV-1-infection. Clin Immunol. 2013;146(2):120–130.
  • Boffito M, Fox J, Bowman C, et al. Safety, immunogenicity and efficacy assessment of HIV immunotherapy in a multi-centre, double-blind, randomised, Placebo-controlled Phase Ib human trial. Vaccine. 2013;31(48):5680–5686.
  • Tung FY, Tung JK, Pallikkuth S, et al. A therapeutic HIV-1 vaccine enhances anti-HIV-1 immune responses in patients under highly active antiretroviral therapy. Vaccine. 2016;34(19):2225–2232.
  • Hancock G, Morón-López S, Kopycinski J, et al. Evaluation of the immunogenicity and impact on the latent HIV-1 reservoir of a conserved region vaccine, MVA. HIVconsv, in antiretroviral therapy-treated subjects. J Int AIDS Soc. 2017;20(1):21171.
  • Iaria ML, Fiorentini S, Focà E, et al. Synthetic HIV-1 matrix protein p17-based AT20-KLH therapeutic immunization in HIV-1-infected patients receiving antiretroviral treatment: A phase I safety and immunogenicity study. Vaccine. 2014;32(9):1072–1078.
  • Loret EP, Darque A, Jouve E, et al. Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial. Retrovirology. 2016;13(1):21.
  • Goldstein G, Damiano E, Donikyan M, et al. HIV-1 Tat B-cell epitope vaccination was ineffectual in preventing viral rebound after ART cessation: HIV rebound with current ART appears to be due to infection with new endogenous founder virus and not to resurgence of pre-existing Tat-dependent viremia. Hum Vaccin Immunother. 2012;8(10):1425–1430.
  • Ensoli F, Cafaro A, Casabianca A, et al. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: Results of a randomized phase II exploratory clinical trial. Retrovirology. 2015;12(1):33.
  • Dinges W, Girard PM, Podzamczer D, et al. The F4/AS01B HIV-1 vaccine candidate is safe and immunogenic, but does not show viral efficacy in antiretroviral therapy-naive, HIV-1-infected adults: A randomized controlled trial. Medicine. 2016;95(6):e2673.
  • García F, Climent N, Guardo AC, et al. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med. 2013;5(166):166ra2.
  • Gandhi RT, Kwon DS, Macklin EA, et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: Results of a randomized, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;71(3):246.
  • Macatangay BJ, Riddler SA, Wheeler ND, et al. Therapeutic vaccination with dendritic cells loaded with autologous HIV type 1-infected apoptotic cells. J Infect Dis. 2016;213(9):1400–1409.
  • Jacobson JM, Routy JP, Welles S, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: A randomized, double-blind, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;72(1):31.
  • De Bruyn G, Vargas-Cortez M, Warren T, et al. A randomized controlled trial of a replication defective (gH deletion) herpes simplex virus vaccine for the treatment of recurrent genital herpes among immunocompetent subjects. Vaccine. 2006;24(7):914–920.
  • Casanova G, Cancela R, Alonzo L, et al. A double-blind study of the efficacy and safety of the ICP10PK vaccine against recurrent genital HSV-2 infections. Cutis. 2002;70(4):205–206.
  • Wald A, Koelle DM, Fife K, et al. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine. 2011;29(47):8520–8529.
  • Straus SE, Savarese B, Krause PR, et al. Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes. Lancet. 1994;343(8911):1460–1463.
  • Alvarez-Lajonchere L, Shoukry NH, Gra B, et al. Immunogenicity of CIGB-230, a therapeutic DNA vaccine preparation, in HCV-chronically infected individuals in a Phase I clinical trial. J Viral Hepat. 2009;16(3):156–167.
  • Yutani S, Komatsu N, Shichijo S, et al. Phase I clinical study of a peptide vaccination for hepatitis C virus-infected patients with different human leukocyte antigen-class IA alleles. Cancer Sci. 2009;100(10):1935–1942.
  • Klade CS, Wedemeyer H, Berg T, et al. Therapeutic vaccination of chronic hepatitis C non-responder patients with the peptide vaccine IC41. Gastroenterology. 2008;134(5):1385–1395.
  • Nevens F, Roskams T, Van Vlierberghe H, et al. A pilot study of therapeutic vaccination with envelope protein E1 in 35 patients with chronic hepatitis C. Hepatology. 2003;38(5):1289–1296.
  • Habersetzer F, Baumert TF, Stoll-Keller F. Gl-5OO5, a yeast vector vaccine expressing an NS3-core fusion protein. Curr Opin Mol Ther. 2009;11(4):456–462.
  • Roy MJ, Wu MS, Barr LJ, et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine. 2000;19(7–8):764–778.
  • Shih C, Chou SF, Yang CC, et al. Control and eradication strategies of hepatitis B virus. Trends Microbiol. 2016;24(9):739–749.
  • Yang SH, Lee CG, Park SH, et al. Correlation of antiviral T-cell responses with suppression of viral rebound in chronic hepatitis B carriers: A proof-of-concept study. Gene Ther. 2006;13(14):1110–1117.
  • Kim CY, Kang ES, Kim SB, et al. Increased in vivo immunological potency of HB-110, a novel therapeutic HBV DNA vaccine, by electroporation. Exp Mol Med. 2008;40(6):669–676.
  • Lobaina Y, Michel ML. Chronic hepatitis B: Immunological profile and current therapeutic vaccines in clinical trials. Vaccine. 2017;35(18):2308–2314.
  • Wilson EM, Tang L, Kottilil S. Eradication strategies for chronic hepatitis B infection. Clin Infect Dis. 2016;62(4):S318–S325.
  • Seto WK, Fung J, Yuen MF, et al. Future prevention and treatment of chronic hepatitis B infection. J Clin Gastroenterol. 2012;46(9):725–734.
  • Lok AS, Pan CQ, Han SH, et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J Hepatol. 2016;65(3):509–516.
  • Xu DZ, Wang XY, Shen XL, et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: Experiences and findings. J Hepatol. 2013;59(3):450–456.
  • Heathcote J, McHutchison J, Lee S, et al. A pilot study of the CY-1899 T-cell vaccine in subjects chronically infected with hepatitis B virus. Hepatology. 1999;30(2):531–536.
  • Dembek C, Protzer U, Roggendorf M. Overcoming immune tolerance in chronic hepatitis B by therapeutic vaccination. Curr Opin Virol. 2018;30:58–67.
  • Rajčáni J, Szathmary S. Peptide vaccines: New trends for avoiding the autoimmune response. Open Infect Dis J. 2018;10(1):47–62.
  • Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: A Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3883–3975.
  • Kawana K, Adachi K, Kojima S, et al. Oral vaccination against HPV E7 for treatment of cervical intraepithelial neoplasia grade 3 (CIN3) elicits E7-specific mucosal immunity in the cervix of CIN3 patients. Vaccine. 2014;32(47):6233–6239.
  • Frazer IH, Quinn M, Nicklin JL, et al. Phase I study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX™ adjuvant in women with cervical intraepithelial neoplasia. Vaccine. 2004;23(2):172–181.
  • Vici P, Pizzuti L, Mariani L, et al. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: Hope or reality from clinical studies. Expert Rev Vaccines. 2016;15(10):1327–1336.
  • Corona Gutierrez CM, Tinoco A, Navarro T, et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther. 2004;15(5):421–431.
  • Y Carvajal AA, de la Garza A, Quiroz BJ, et al. MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma. BioDrugs. 2007;21(1):47–59.
  • van Steenwijk PJ, Ramwadhdoebe TH, Löwik MJ, et al. A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol Immunother. 2012;61(9):1485–1492.
  • Zandberg DP, Rollins S, Goloubeva O, et al. A phase I dose escalation trial of MAGE-A3-and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol Immunother. 2015;64(3):367–379.
  • Kim TJ, Jin HT, Hur SY, et al. Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 2014;5(1):1–4.
  • Trimble CL, Morrow MP, Kraynyak KA, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015;386(10008):2078–2088.
  • Leroux-Roels G, Maes C, Clement F, et al. Randomized phase I: Safety, immunogenicity and mucosal antiviral activity in young healthy women vaccinated with HIV-1 Gp41 P1 peptide on virosomes. PLoS One. 2013;8(2):e55438.
  • Bekker LG, Moodie Z, Grunenberg N, et al. Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: A phase 1/2 trial. Lancet HIV. 2018;5(7):e366–78.
  • Anderson J, Olafsdottir TA, Kratochvil S, et al. Molecular signatures of a TLR4 agonist-adjuvanted HIV-1 vaccine candidate in humans. Front Immunol. 2018;9:301.
  • Baden LR, Walsh SR, Seaman MS, et al. First-in-human randomized, controlled trial of mosaic HIV-1 immunogens delivered via a modified vaccinia Ankara vector. J Infect Dis. 2018;218(4):633–644.
  • Barouch DH, Tomaka FL, Wegmann F, et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet. 2018;392(10143):232–243.
  • Sacha JB, Chung C, Rakasz EG, et al. Gag-specific CD8+ T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression. J Immunol. 2007;178(5):2746–2754.
  • Stephenson KE, Keefer MC, Bunce CA, et al. First-in-human randomized controlled trial of an oral, replicating adenovirus 26 vector vaccine for HIV-1. PLoS One. 2018;13(11):e0205139.
  • Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med. 2013;369(22):2083–2092.
  • Corey L, Langenberg AG, Ashley R, et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: Two randomized controlled trials. JAMA. 1999;282(4):331–340.
  • Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-D–adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347(21):1652–1661.
  • Drane D, Maraskovsky E, Gibson R, et al. Priming of CD4+ and CD8+ T cell responses using a HCV core ISCOMATRIX™ vaccine: A phase I study in healthy volunteers. Hum Vaccines. 2009;5(3):151–157.
  • Barnes E, Folgori A, Capone S, et al. vel adenovirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci Transl Med. 2012;4(115):115ra1.
  • Kelly C, Swadling L, Capone S, et al. Chronic hepatitis C viral infection subverts vaccine-induced T-cell immunity in humans. Hepatology. 2016;63(5):1455–1470.
  • Elhanan E, Boaz M, Schwartz I, et al. A randomized, controlled clinical trial to evaluate the immunogenicity of a PreS/S hepatitis B vaccine Sci-B-Vac™, as compared to Engerix B®, among vaccine naïve and vaccine non-responder dialysis patients. Clin Exp Nephrol. 2018;22(1):151–158.
  • Keating GM, Noble S. Recombinant hepatitis B vaccine (Engerix-B®). Drugs. 2003;63(10):1021–1051.
  • Villa LL, Costa RL, Petta CA, et al. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up. Br J Cancer. 2006;95(11):1459–1466.
  • Vesikari T, Brodszki N, Van Damme P, et al. A randomized, double-blind, phase III study of the immunogenicity and safety of a 9-valent human papillomavirus L1 virus-like particle vaccine (V503) versus Gardasil® in 9-15-year-old girls. Pediatr Infect Dis J. 2015;34(9):992–998.
  • Willems L, Hasegawa H, Accolla R, et al. Reducing the global burden of HTLV-1 infection: An agenda for research and action. Antiviral Res. 2017;137:41–48.
  • Mahieux R. A vaccine against HTLV-1 HBZ makes sense. Blood Adv. 2015;126(9):1052–1053.
  • Gutiérrez G, Rodríguez SM, De Brogniez A, et al. Vaccination against δ-retroviruses: The bovine leukemia virus paradigm. Viruses. 2014;6(6):2416–2427.
  • UNAIDS. 2018 Global AIDS Update: Miles to go-closing gaps, breaking barriers, righting injustices; available at: http://aidsinfo.unaids.org/.
  • Sagar D, Masih S, Schell T, et al. In vivo immunogenicity of Tax (11-19) epitope in HLA-A2/DTR transgenic mice: Implication for dendritic cell-based anti-HTLV-1 vaccine. Vaccine. 2014;32(26):3274–3284.
  • Luciw PA. Human immunodeficiency viruses and their replication. In: Fields BN, editor. Virology. 3rd ed. Philadelphia: Lippincott-Raven; 1996. p. 1881–1952.
  • Plantier JC, Leoz M, Dickerson JE, et al. A new human immunodeficiency virus derived from gorillas. Nat Med. 2009;15(8):871–872.
  • Teixeira C, Gomes JR, Gomes P, et al. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: Brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur J Med Chem. 2011;46(4):979–992.
  • Sanabani S, Neto WK, Kalmar EM, et al. Analysis of the near full length genomes of HIV-1 subtypes B, F and BF recombinant from a cohort of 14 patients in Sao Paulo, Brazil. Infect Genet Evol. 2006;6(5):368–377.
  • McCutchan FE. Understanding the genetic diversity of HIV-1. AIDS. 2000;14(3):S31–S44.
  • Kirchhoff F. HIV life cycle: Overview. Encyclopedia of AIDS. 2013;1–9.
  • Frankel AD, Young JA. HIV-1: Fifteen proteins and an RNA. Annu Rev Biochem. 1998;67(1):1–25.
  • van Kooyk Y, Geijtenbeek TBDC. SIGN: Escape mechanism for pathogens. Nat Rev Immunol. 2003;3(9):697–709.
  • Dalgleish AG, Beverley PC, Clapham PR, et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312(5996):763–767.
  • Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):667–673.
  • Freed EO, Martin MA. HIVs and their replication. In: Knipe DM, Howley PM, Griffin DE, et al., editors. Field’s Virology. Lippincot: Williams & Wilkins; 2007.
  • Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol. 2008;18(2):203–217.
  • Wang T, Town T, Alexopoulou L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10(12):1366–1373.
  • Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–105.
  • Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity. 2006;25(3):373–381.
  • Theofilopoulos AN, Baccala R, Beutler B, et al. Type I interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol. 2005;23(1):307–335.
  • Piguet V, Steinman RM. The interaction of HIV with dendritic cells: Outcomes and pathways. Trends Immunol. 2007;28(11):503–510.
  • Granelli-Piperno A, Pritsker A, Pack M, et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol. 2005;175(7):4265–4273.
  • Trinchieri G. Interleukin-12: A cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70: 83–243. Academic Press..
  • Alter G, Suscovich TJ, Teigen N, et al. Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. J Immunol. 2007;178(12):7658–7666.
  • Malleret B, Manéglier B, Karlsson I, et al. Primary infection with simian immunodeficiency virus: Plasmacytoid dendritic cell homing to lymph nodes, type I interferon, and immune suppression. Blood Adv. 2008;112(12):4598–4608.
  • Borrow P, Lewicki H, Hahn BH, et al. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68(9):6103–6110.
  • Goonetilleke N, Liu MK, Salazar-Gonzalez JF, et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med. 2009;206(6):1253–1272.
  • Liao HX, Chen X, Munshaw S, et al. Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med. 2011;208(11):2237–2249.
  • Tomaras GD, Yates NL, Liu P, et al. Initial B-cell responses to transmitted human immunodeficiency virus type 1: Virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol. 2008;82(24):12449–12463.
  • Gray ES, Moore PL, Choge IA, et al. Neutralizing antibody responses in acute human immunodeficiency virus type 1 subtype C infection. J Virol. 2007;81(12):6187–6196.
  • McMichael AJ, Borrow P, Tomaras GD, et al. The immune response during acute HIV-1 infection: Clues for vaccine development. Nat Rev Immunol. 2010;10(1):11–23.
  • Global HIV & AIDS statistics-2018 fact sheet: UNAIDS. 2018. Available from: https://www.unaids.org/en/resources/fact-sheet
  • Adnan S, Reeves RK, Gillis J, et al. Persistent low-level replication of SIVΔnef drives maturation of antibody and CD8 T cell responses to induce protective immunity against vaginal SIV infection. PLoS Pathog. 2016;12(12):e1006104.
  • Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med. 2012;366(14):1275–1286.
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361(23):2209–2220.
  • Lori F, Trocio J, Bakare N, et al. DermaVir, a novel HIV immunisation technology. Vaccine. 2005;23(17–18):2030–2034.
  • Morrow MP, Tebas P, Yan J, et al. Synthetic consensus HIV-1 DNA induces potent cellular immune responses and synthesis of granzyme B, perforin in HIV infected individuals. Mol Ther. 2015;23(3):591–601.
  • Dropulic LK, Oestreich MC, Pietz HL, et al. A randomized, double-blinded, placebo-controlled, phase 1 study of a replication-defective herpes simplex virus (HSV) type 2 vaccine, HSV529, in adults with or without HSV infection. J Infect Dis. 2019;220(6):990–1000.
  • International AIDS vaccine Initiative. www.iavi.org
  • Pitisuttithum P, Marovich MA. Prophylactic HIV vaccine: Vaccine regimens in clinical trials and potential challenges. Expert Rev Vaccines. 2020;19(2):133–142.
  • Baden LR, Karita E, Mutua G, et al. Assessment of the safety and immunogenicity of 2 novel vaccine platforms for HIV-1 prevention: A randomized trial. Ann Intern Med. 2016;164(5):313–322.
  • Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother. 2020;16(3):713–722.
  • Sobieszczyk ME. Therapeutic HIV Vaccines and Broadly Neutralizing Antibodies. Top Antivir Med. 2020;27(4):97.
  • Johnston C, Koelle DM, Wald A. Current status and prospects for development of an HSV vaccine. Vaccine. 2014;32(14):1553–1560.
  • Kimberlin DW, Lin CY, Jacobs RF, et al. Natural history of neonatal herpes simplex virus infections in the acyclovir era. Pediatrics. 2001;108(2):223–229.
  • Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948–2952.
  • Mertz KJ, Trees D, Levine WC, et al. Etiology of genital ulcers and prevalence of human immunodeficiency virus coinfection in 10 US cities. J Infect Dis. 1998;178(6):1795–1798.
  • Lewis DA, Müller E, Steele L, et al. Prevalence and associations of genital ulcer and urethral pathogens in men presenting with genital ulcer syndrome to primary health care clinics in South Africa. Sex Transm Dis. 2012;39(11):880–885.
  • Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. Biochemistry (Moscow). 2014;79(13):1635–1652.
  • Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev. 2003;16(1):96–113.
  • Voellmy R, Bloom DC, Vilaboa N, et al. Recombinant Virus Vaccines. In: Development of recombinant HSV-based vaccine vectors. New York: Humana Press; 2017. p. 55–78.
  • Dropulic LK, Cohen JI. The challenge of developing a herpes simplex virus 2 vaccine. Expert Rev Vaccines. 2012;11(12):1429–1440.
  • Coleman JL, Shukla D. Recent advances in vaccine development for herpes simplex virus types I and II. Hum Vaccin Immunother. 2013;9(4):729–735.
  • Cohen GH, Dietzschold B, De Leon MP, et al. Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J Virol. 1984;49(1):102–108.
  • Shukla D, Spear PG. Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry. J Clin Invest. 2001;108(4):503–510.
  • Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virol J. 2005;2(1):59.
  • Malmgaard L, Paludan SR, Mogensen SC, et al. Herpes simplex virus type 2 induces secretion of IL-12 by macrophages through a mechanism involving NF-κB. J Gen Virol. 2000;81(12):3011–3020.
  • Kanangat S, Thomas J, Gangappa S, et al. Herpes simplex virus type 1-mediated up-regulation of IL-12 (p40) mRNA expression. Implications in immunopathogenesis and protection. J Immunol. 1996;156(3):1110–1116.
  • Gomez M Efficacy against genital herpes infection using adjuvants with gD tripeptide liposomal vaccines or liposomal vaccines without gD tripeptide (Doctoral dissertation, California State Polytechnic University, Pomona) 2018.
  • Kern AB, Schiff BL. Vaccine therapy in recurrent herpes simplex. Arch Dermatol. 1964;89(6):844–845.
  • Bernstein DI, Stanberry LR. Herpes simplex virus vaccines. Vaccine. 1999;17(13–14):1681–1689.
  • Zhu XP, Muhammad ZS, Wang JG, et al. HSV-2 vaccine: Current status and insight into factors for developing an efficient vaccine. Viruses. 2014;6(2):371–390.
  • Johnston C, Koelle DM, Wald AHSV. 2: In pursuit of a vaccine. J Clin Invest. 2011;121(12):4600–4609.
  • Garnett GP, Dubin G, Slaoui M, et al. The potential epidemiological impact of a genital herpes vaccine for women. Sex Transm Infect. 2004;80(1):24–29.
  • Bernstein DI, Cardin RD, Bravo FJ, et al. Successful application of prime and pull strategy for a therapeutic HSV vaccine. Npj Vaccines. 2019;4(1):1.
  • Bernstein DI, Flechtner JB, McNeil LK, et al. Therapeutic HSV-2 vaccine decreases recurrent virus shedding and recurrent genital herpes disease. Vaccine. 2019;37(26):3443–3450.
  • Shi G, Suzuki T. Molecular basis of encapsidation of hepatitis C virus genome. Front Microbiol. 2018;9:396.
  • Straus SE, Wald A, Kost RG, et al. Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: Results of a placebo-controlled vaccine trial. J Infect Dis. 1997;176(5):1129–1134.
  • Habersetzer F, Honnet G, Bain C, et al. A poxvirus vaccine is safe, induces T-cell responses, and decreases viral load in patients with chronic hepatitis C. Gastroenterology. 2011;141(3):890–899.
  • Flechtner JB, Long D, Larson S, et al. Immune responses elicited by the GEN-003 candidate HSV-2 therapeutic vaccine in a randomized controlled dose-ranging phase 1/2a trial. Vaccine. 2016;34(44):5314–5320.
  • Manns MP, Buti M, Gane E, et al. Hepatitis C virus infection. Nat Rev Dis Primers. 2017;3(1):1–9.
  • Ogholikhan S, Schwarz KB. Hepatitis vaccines. Vaccines (Basel). 2016;4(1):6.
  • Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J. 2015;12(1):217.
  • Basirnejad M, Bolhassani A, Sadat SM. The distinct role of small heat shock protein 20 on HCV NS3 expression in HEK-293T cell line. Avicenna J Med Biotechnol. 2018;10(3):152.
  • Dustin LB, Bartolini B, Capobianchi MR, et al. Hepatitis C virus: Life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin Microbiol Infect. 2016;22(10):826–832.
  • Paul D, Madan V, Bartenschlager R. Hepatitis C virus RNA replication and assembly: Living on the fat of the land. Cell Host Microbe. 2014;16(5):569–579.
  • Verma R, Khanna P, Chawla S. Hepatitis C vaccine: Need of the hour. Hum Vaccin Immunother. 2014;10(7):1927–1929.
  • Alizadeh S, Irani S, Bolhassani A, et al. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett. 2019;212:70–80.
  • Didigu CA, Doms RW. Novel approaches to inhibit HIV entry. Viruses. 2012;4(2):309–324.
  • Man John Law L, Landi A, Magee WC, et al. Progress towards a hepatitis C virus vaccine. Emerg Microbes Infect. 2013;2(1):1–7.
  • Heim MH. Innate immunity and HCV. J Hepatol. 2013;58(3):564–574.
  • Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev Microbiol. 2007;5(6):453–463.
  • Bartosch B, Vitelli A, Granier C, et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem. 2003;278(43):41624–41630.
  • Santantonio T, Wiegand J, Gerlach JT. Acute hepatitis C: Current status and remaining challenges. J Hepatol. 2008;49(4):625–633.
  • Kouka Saadeldin Abdelwahab ZN. Status of hepatitis C virus vaccination: Recent update. World J Gastroenterol. 2016;22(2):862.
  • Kinchen VJ, Zahid MN, Flyak AI, et al. Broadly neutralizing antibody mediated clearance of human hepatitis C virus infection. Cell Host Microbe. 2018;24(5):717–730.
  • Laidlaw SM, Dustin LB. An HCV vaccine on the fly. J Infect Dis. 2020;221(8):1216–1218.
  • Mirnurollahi SM, Bolhassani A, Irani S, et al. Expression and purification of HCV core and core-E1E2 proteins in different bacterial strains. Iran J Biotechnol. 2015;13(3):57.
  • Ball JK, Tarr AW, McKeating JA. The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Res. 2014;105:100–111.
  • Guo X, Zhong JY, Li JW. 117. Hepatitis C virus infection and vaccine development. J Clin Exp Hepatol. 2018;8(2):195–204.
  • Yan Y, Wang X, Lou P, et al. A nanoparticle-based HCV vaccine with enhanced potency. J Infect Dis. 2020;221(8): 1304–1314.
  • Christiansen D, Earnest-Silveira L, Grubor-Bauk B, et al. Preclinical evaluation of a quadrivalent HCV VLP vaccine in pigs following microneedle delivery. Sci Rep. 2019;9(1):1–3.
  • Kardani K, Bolhassani A, Shahbazi S. 120. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine. 2016;34(4):413–423.
  • Walker CM. Designing an HCV vaccine: A unique convergence of prevention and therapy? Curr Opinion Virol. 2017;23:113–119.
  • Pestka JM, Zeisel MB, Bläser E, et al. Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci. 2007;104(14):6025–6030.
  • Shoukry NH. Hepatitis C vaccines, antibodies, and T cells. Front Immunol. 2018;9:1480.
  • Roohvand F, Kossari N. Advances in hepatitis C virus vaccines, part two: Advances in hepatitis C virus vaccine formulations and modalities. ‎Expert Opin Ther Pat. 2012;22(4):391–415.
  • Thimme R, Bukh J, Spangenberg HC, et al. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc Natl Acad Sci. 2002 Nov 26;99(24):15661–15668.
  • Beaumont E, Roingeard P. Prospects for prophylactic hepatitis C vaccines based on virus-like particles. Hum Vaccin Immunother. 2013;9(5):1112–1118.
  • Liang TJ. Current progress in development of hepatitis C virus vaccines. Nat Med. 2013;19(7):869.
  • Bailey JR, Barnes E, Cox AL. Approaches, progress, and challenges to hepatitis C vaccine development. Gastroenterology. 2019;156(2):418–430.
  • Christiansen D, Earnest-Silveira L, Chua B, et al. Immunological responses following administration of a genotype 1a/1b/2/3a quadrivalent HCV VLP vaccine. Sci Rep. 2018;8(1):1–3.
  • O’Hagan DT, Singh M, Dong C, et al. Cationic microparticles are a potent delivery system for a HCV DNA vaccine. Vaccine. 2004;23(5):672–680.
  • Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother. 2014;10(2):321–332.
  • Amador-Cañizares Y, Martínez-Donato G, Álvarez-Lajonchere L, et al. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin. World J Gastroenterol. 2014;20(1):148.
  • Sallberg MM, Frelin L, Diepolder H, et al. A first clinical trial of therapeutic vaccination using naked DNA delivered by in vivo electroporation shows antiviral effects in patients with chronic hepatitis C. J Hepatol. 2009;50:S18–S19.
  • Castellanos M, Cinza Z, Dorta Z, et al. Immunization with a DNA vaccine candidate in chronic hepatitis C patients is safe, well tolerated and does not impair immune response induction after anti-hepatitis B vaccination. J Gene Med. 2010;12(1):107–116.
  • Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol. 2011;54(6):1273–1285.
  • Basirnejad M, Bolhassani A. Development of HCV therapeutic vaccines using Hp91 peptide and small heat shock protein 20 as an adjuvant. Protein Pept Lett. 2018 Oct 1;25(10):924–932.
  • Khan KH. DNA vaccines: Roles against diseases. Germs. 2013;3(1):26.
  • Feinstone SM, Hu DJ, Major ME. Prospects for prophylactic and therapeutic vaccines against hepatitis C virus. Clin Infect Dis. 2012;55(suppl_1):S25–32.
  • Bastani MN, Keyvani H, Esghaei M, et al. Prevalence of occult hepatitis C virus infection in Iranian patients with beta thalassemia major. Arch Virol. 2016;161(7):1899–1906.
  • Castillo I, Pardo M, Bartolomé J, et al. Occult hepatitis C virus infection in patients in whom the etiology of persistently abnormal results of liver-function tests is unknown. J Infect Dis. 2004;189(1):7–14.
  • Castillo I, Rodriguez-Inigo E, Bartolome J, et al. Hepatitis C virus replicates in peripheral blood mononuclear cells of patients with occult hepatitis C virus infection. Gut. 2005;54(5):682–685.
  • Castillo I, Rodríguez-Iñigo E, López-Alcorocho JM, et al. Hepatitis C virus replicates in the liver of patients who have a sustained response to antiviral treatment. Clin Infect Dis. 2006;43(10):1277–1283.
  • Yousif MM, Elsadek Fakhr A, Morad EA, et al. Prevalence of occult hepatitis C virus infection in patients who achieved sustained virologic response to direct-acting antiviral agents. Infez Med. 2018;26(3):237–243.
  • Castillo I, Bartolomé J, Quiroga JA, et al. Diagnosis of occult hepatitis C without the need for a liver biopsy. J Med Virol. 2010;82(9):1554–1559.
  • Ganem D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med. 2004;350(11):1118–1129.
  • Shaheen S, Nouroz F, Khan S, et al. A review on hepatitis B virus, its genotypes and risk factors. Middle East J Sci Res. 2015;23(6):1152–1157.
  • Lau JY, Wright TL. Molecular virology and pathogenesis of hepatitis B. Lancet. 1993;342(8883):1335–1340.
  • Dane DS, Cameron CH, Briggs M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970;295(7649):695–698.
  • Tang LS, Covert E, Wilson E, et al. Chronic hepatitis B infection: A review. JAMA. 2018;319(17):1802–1813.
  • Terrault NA, Lok AS, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67(4):1560–1599.
  • Trépo C, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384(9959):2053–2063.
  • Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 1986;47(3):451–460.
  • Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol. 2007;13(1):48.
  • Lim SG, Agcaoili J, De Souza NN, et al. Therapeutic vaccination for chronic hepatitis B: A systematic review and meta-analysis. J Viral Hepat. 2019;26(7):803–817.
  • Ghasemi F, Rostami S, Ghayour-Mobarhan M, et al. Current progress in the development of therapeutic vaccines for chronic hepatitis B virus infection. Iran J Basic Med Sci. 2016;19(7):692.
  • Isogawa M, Robek MD, Furuichi Y, et al. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol. 2005;79(11):7269–7272.
  • Wu J, Lu M, Meng Z, et al. Toll‐like receptor‐mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology. 2007;46(6):1769–1778.
  • Bertoletti A, Gehring AJ, Heitman J. Immune therapeutic strategies in chronic hepatitis B virus infection: Virus or inflammation control? PLoS Pathog. 2013;9(12):e1003784.
  • Thimme R, Wieland S, Steiger C, et al. CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol. 2003;77(1):68–76.
  • Spellman M, Martin JT. Treatment of chronic hepatitis B infection with DV-601: A therapeutic vaccine. J Hepatol. 2011;54:S302.
  • Stross L, Günther J, Gasteiger G, et al. Foxp3+ regulatory T cells protect the liver from immune damage and compromise virus control during acute experimental hepatitis B virus infection in mice. Hepatology. 2012;56(3):873–883.
  • Wu SF, Wang WJ, Gao YQ. Natural killer cells in hepatitis B virus infection. Braz J Infect Dis. 2015;19(4):417–425.
  • Maini MK, Peppa D. NK cells: A double-edged sword in chronic hepatitis B virus infection. Front Immunol. 2013;4:57.
  • Cassidy A, Mossman S, Olivieri A, et al. Hepatitis B vaccine effectiveness in the face of global HBV genotype diversity. Expert Rev Vaccines. 2011;10(12):1709–1715.
  • André FE. Summary of safety and efficacy data on a yeast-derived hepatitis B vaccine. Am J Med. 1989;87(3):S14–S20.
  • Krawczyk A, Ludwig C, Jochum C, et al. Induction of a robust T-and B-cell immune response in non-and low-responders to conventional vaccination against hepatitis B by using a third generation PreS/S vaccine. Vaccine. 2014;32(39):5077–5082.
  • Soulie JC, Devillier P, Santarelli J, et al. Immunogenicity and safety in newborns of a new recombinant hepatitis B vaccine containing the S and pre-S2 antigens. Vaccine. 1991;9(8):545–548.
  • Chien YC, Jan CF, Kuo HS, et al. Nationwide hepatitis B vaccination program in Taiwan: Effectiveness in the 20 years after it was launched. Epidemiol Rev. 2006;28(1):126–135.
  • Monie A, Hung CF, Roden R, et al. Cervarix™: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics. 2008;2(1):107.
  • Rey D, Piroth L, Wendling MJ, et al. Safety and immunogenicity of double-dose versus standard-dose hepatitis B revaccination in non-responding adults with HIV-1 (ANRS HB04 B-BOOST): A multicentre, open-label, randomised controlled trial. Lancet Infect Dis. 2015;15(11):1283–1291.
  • Mouchet J, Salvo F, Raschi E, et al. Hepatitis B vaccination and the putative risk of central demyelinating diseases–A systematic review and meta-analysis. Vaccine. 2018;36(12):1548–1555.
  • Lim SG. Heplisav™: A new hepatitis B vaccine. Future Med. 2008;3(2):109–117.
  • Michel ML, Loirat D. DNA vaccines for prophylactic or therapeutic immunization against hepatitis B. Intervirology. 2001;44(2–3):78–87.
  • Shahmoradi S, Yahyapour Y, Mahmoodi M, et al. High prevalence of occult hepatitis B virus infection in children born to HBsAg-positive mothers despite prophylaxis with hepatitis B vaccination and HBIG. J Hepatol. 2012;57(3):515–521.
  • Okamoto H, Yano K, Nozaki Y, et al. Mutations within the S gene of hepatitis B virus transmitted from mothers to babies immunized with hepatitis B immune globulin and vaccine. Pediatric Res. 1992;32(3):264–268.
  • Stanley M. Tumour virus vaccines: Hepatitis B virus and human papillomavirus. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160268.
  • Batdelger D, Dandii D, Jirathitikal V, et al. Open label trial of therapeutic hepatitis B vaccine V-5 Immunitor (V5) delivered by oral route. Lett Drug Des Discov. 2007;4(8):540–544.
  • Ponde RAA. Expression and detection of anti-HBs antibodies after hepatitis B virus infection or vaccination in the context of protective immunity. Arch Virol. 2019;164(11):2645–2658.
  • Li J, Bao M, Ge J, et al. Research progress of therapeutic vaccines for treating chronic hepatitis B. Hum Vaccin Immunother. 2017;13(5):986–997.
  • Wen Y, Wang X, Wang B, et al. Vaccine therapies for chronic hepatitis B: Can we go further? Front Med. 2014;8(1):17–23.
  • Almeida S, Borges O M. Nasal vaccines against hepatitis B: An update. Curr Pharm Biotechnol. 2015;16(10):882–890.
  • Kosinska AD, Liu J, Lu M, et al. Therapeutic vaccination and immunomodulation in the treatment of chronic hepatitis B: Preclinical studies in the woodchuck. Med Microbiol Immunol. 2015;204(1):103–114.
  • Kosinska AD, Bauer T, Protzer U. Therapeutic vaccination for chronic hepatitis B. Curr Opin Virol. 2017;23:75–81.
  • Fontaine H, Kahi S, Chazallon C, et al. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: A randomised trial-ANRS HB02 VAC-ADN. Gut. 2015;64(1):139–147.
  • Godon O, Fontaine H, Kahi S, et al. Immunological and antiviral responses after therapeutic DNA immunization in chronic hepatitis B patients efficiently treated by analogues. Mol Ther. 2014;22(3):675–684.
  • Yoon SK, Seo YB, Im SJ, et al. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver Int. 2015;35(3):805–815.
  • Protzer U, Maini MK, Knolle PA. Living in the liver: Hepatic infections. Nat Rev Immunol. 2012;12(3):201–213.
  • Akbar SM, Al-Mahtab M, Khan SI, et al. Current trends in hepatitis B vaccination. Future Virol. 2016;11(5):369–378.
  • Han IK, Kim YB, Kang HS, et al. Thermosensitive and mucoadhesive delivery systems of mucosal vaccines. Methods. 2006;38(2):106–111.
  • El-Maksoud MA, Habeeb MR, Ghazy HF, et al. Clinicopathological study of occult hepatitis B virus infection in hepatitis C virus-associated hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2019;31(6):716–722.
  • Hu KQ. Occult hepatitis B virus infection and its clinical implications. J Viral Hepatitis. 2002;9(4):243–257.
  • Yip TC, Wong GL. Current knowledge of occult hepatitis B infection and clinical implications. Semin Liver Dis. 2019;39(2):249–260.
  • Raimondo G, Pollicino T, Cacciola I, et al. Occult hepatitis B virus infection. J Hepatol. 2007;46(1):160–170.
  • Pollicino T, Saitta C. Occult hepatitis B virus and hepatocellular carcinoma. World J Gastroenterol. 2014;20(20):5951.
  • Chang JJ, Mohtashemi N, Bhattacharya D. Significance and management of isolated hepatitis B core antibody (anti-HBc) in HIV and HCV: Strategies in the DAA era. Curr HIV/AIDS Rep. 2018;15(2):172–181.
  • Lok AS, Everhart JE, Di Bisceglie AM, et al. Occult and previous hepatitis B virus infection are not associated with hepatocellular carcinoma in United States patients with chronic hepatitis C. Hepatology. 2011;54(2):434–442.
  • Rodriguez-Inigo E, Bartolome J, Ortiz-Movilla N, et al. Hepatitis C virus (HCV) and hepatitis B virus (HBV) can coinfect the same hepatocyte in the liver of patients with chronic HCV and occult HBV infection. J Virol. 2005;79(24):15578–15581.
  • Chen SY, Kao CF, Chen CM, et al. Mechanisms for inhibition of hepatitis B virus gene expression and replication by hepatitis C virus core protein. J Biol Chem. 2003;278(1):591–607.
  • Mphahlele MJ, Lukhwareni A, Burnett RJ, et al. High risk of occult hepatitis B virus infection in HIV-positive patients from South Africa. J Clin Virol. 2006;35(1):14–20.
  • Wang T, Shen C, Chen L, et al. Association of human leukocyte antigen polymorphisms with occult hepatitis B virus infection in a Shaanxi Han population. J Gen Med. 2017;19(9–10):e2987.
  • Filippini P, Coppola N, Pisapia R, et al. Impact of occult hepatitis B virus infection in HIV patients naive for antiretroviral therapy. AIDs. 2006;20(9):1253–1260.
  • Hancock G, Hellner K, Dorrell L. Therapeutic HPV vaccines. Best Pract Res Clin Obstet Gynaecol. 2018;47:59–72.
  • Cohen J, HIV EM. Nobel prize in physiology or medicine: HIV, HPV researchers honored, but one scientist is left out. Science. 2008;322(5899):174–175.
  • Kardani K, Bolhassani A. General Description of HPVs. HPV Infect. 2018;1:1.
  • Hu D, Goldie S. The economic burden of noncervical human papillomavirus disease in the United States. Am J Obstet Gynecol. 2008;198(5):500–e1.
  • Kardani K, Naderi N, Bolhassani A. The life cycle and transmission of HPV types. HPV Infect. 2018;1:44.
  • Moscicki AB, Schiffman M, Kjaer S, et al. Updating the natural history of HPV and anogenital cancer. Chapter 5 Vaccine. 2006;24(3):S42–S51.
  • Heck JE, Berthiller J, Vaccarella S, et al. Sexual behaviours and the riskof head and neck cancers: A pooled analysis in the international head and neck cancer epidemiology (INHANCE) consortium. Int J Epidemiol. 2010;39(1):166–181.
  • Burchell AN, Coutlée F, Tellier PP, et al. Genital transmission of human papillomavirus in recently formed heterosexual couples. J Infect Dis. 2011;204(11):1723–1729.
  • Hall MT, Simms KT, Lew JB, et al. The projected timeframe until cervical cancer elimination in Australia: A modelling study. Lancet Public Health. 2019;4(1):e19–e27.
  • Zur Hausen H. Papillomaviruses and cancer: From basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–350.
  • Yang R, Yutzy WH, Viscidi RP, et al. Interaction of L2 with β-actin directs intracellular transport of papillomavirus and infection. J Biol Chem. 2003;278(14):12546–122553.
  • Yang R, Day PM, Yutzy WH, et al. Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol. 2003;77(6):3531–3541.
  • Kines RC, Thompson CD, Lowy DR, et al. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci. 2009;106(48):20458–20463.
  • Richards RM, Lowy DR, Schiller JT, et al. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci. 2006;103(5):1522–1527.
  • Carter JJ, Koutsky LA, Hughes JP, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis. 2000;181(6):1911–1919.
  • Wang JW, Jagu S, Wu WH, et al. Seroepidemiology of human papillomavirus 16 (HPV16) L2 and generation of L2-specific human chimeric monoclonal antibodies. Clin Vaccine Immunol. 2015;22(7):806–816.
  • Kawana K, Matsumoto K, Yoshikawa H, et al. A surface immunodeterminant of human papillomavirus type 16 minor capsid protein L2. Virology. 1998;245(2):353–359.
  • Roden RB, Yutzy WH, Fallon R, et al. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology. 2000;270(2):254–266.
  • Kardas-Nelson M. Vaccine uptake and prevalence of HPV related cancers in US men. BMJ. 2019;364:1210.
  • Giuliano AR, Palefsky JM, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. N Engl J Med. 2011;364(5):401–411.
  • Palefsky JM, Giuliano AR, Goldstone S, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med. 2011;365(17):1576–1585.
  • Drolet M, Bénard É, Boily MC, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: A systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–580.
  • Frazer IH. Development and implementation of papillomavirus prophylactic vaccines. J Immunol. 2014;192(9):4007–4011.
  • Dilley S, Miller KM, Huh WK. Human papillomavirus vaccination: Ongoing challenges and future directions. J Gynecol. 2020;156(2):498–502.
  • Clark KT, Trimble CL. Current status of therapeutic HPV vaccines. Gynecol Oncol. 2020;156(2):503–510.
  • Moreira ED, Block SL, Ferris D, et al. Safety profile of the 9-valent HPV vaccine: A combined analysis of 7 phase III clinical trials. Pediatrics. 2016;138(2):e20154387.
  • Future II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–1927.
  • Hildesheim A, Wacholder S, Catteau G, et al. Efficacy of the HPV-16/18 vaccine: Final according to protocol results from the blinded phase of the randomized Costa Rica HPV-16/18 vaccine trial. Vaccine. 2014;32(39):5087–5097.
  • Paavonen J, Jenkins D, Bosch FX, et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: An interim analysis of a phase III double-blind, randomised controlled trial. Lancet. 2007;369(9580):2161–2170.
  • Joura EA, Giuliano AR, Iversen OE, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med. 2015;372(8):711–723.
  • Panatto D, Amicizia D, Bragazzi NL, et al. Human papillomavirus vaccine: State of the art and future perspectives. Adv Protein Chem Struct Biol. 2015;101:231–322.
  • Schellenbacher C, Roden RB, Kirnbauer R. Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res. 2017;231:166–175.
  • Gambhira R, Jagu S, Karanam B, et al. Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. J Virol. 2007;81(21):11585–11592.
  • Gambhira R, Karanam B, Jagu S, et al. A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol. 2007;81(24):13927–13931.
  • De Vuyst H, Lillo F, Broutet N, et al. HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. Eur J Cancer Prev. 2008;17(6):545–554.
  • Hinten F, Meeuwis KA, Van Rossum MM, et al. HPV-related (pre) malignancies of the female anogenital tract in renal transplant recipients. Crit Rev Oncol Hematol. 2012;84(2):161–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.