160
Views
1
CrossRef citations to date
0
Altmetric
Review

Repurposing denosumab in breast cancer beyond prevention of skeletal related events: Could nonclinical data be translated into clinical practice?

ORCID Icon, & ORCID Icon
Pages 1235-1252 | Received 09 Jul 2020, Accepted 16 Oct 2020, Published online: 04 Nov 2020

References

  • McCabe B, Liberante F, Mills KI. Repurposing medicinal compounds for blood cancer treatment. Ann Hematol. 2015;94(8):1267–1276.
  • Peters S, Clézardin P, Márquez-Rodas I, et al. The RANK-RANKL axis: an opportunity for drug repurposing in cancer? Clin Transl Oncol. 2019;21(8):977–991.
  • [ cited 2020 Feb]. Available from: https://www.drugs.com/history/prolia.html
  • Martin TJ. Historically significant events in the discovery of RANK/RANKL/OPG. World J Orthop. 2013;4(4):186–197.
  • Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–146.
  • Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155–192.
  • Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–179.
  • Hanada R, Hanada T, Sigl V, et al. RANKL/RANK-beyond bones. J Mol Med (Berl). 2011;89(7):647–656.
  • de Groot AF, Appelman-Dijkstra NM, van der Burg SH, et al. The anti-tumor effect of RANKL inhibition in malignant solid tumors—a systematic review. Cancer Treat Rev. 2018;62:18–28.
  • Renema N, Navet B, Heymann MF, et al. RANK–RANKL signalling in cancer. Biosci Rep. 2016;36(4):pii: e00366.
  • Yu X, Kong W, Zheng K. Expression of osteoprotegerin and osteoprotegerin ligand in giant cell tumor of bone and its clinical significance. Oncol Lett. 2013;5(4):1133–1139.
  • Molyneux SD, Di Grappa MA, Beristain AG, et al. Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice. J Clin Invest. 2010;120(9):3310–3325.
  • Navet B, Ando K, Vargas-Franco JW, et al. The intrinsic and extrinsic implications of RANKL/RANK signaling in osteosarcoma: from tumor initiation to lung metastases. Cancers (Basel). 2018;10(11):pii: E398.
  • [ cited 2020 Mar]. Available from: https://clinicaltrials.gov/
  • Lipton A, Jacobs I. Denosumab: benefits of RANK ligand inhibition in cancer patients. Curr Opin Support Palliat Care. 2011;5(3):258–264.
  • Gaston CL, Puls F, Grimer RJ. The dilemma of denosumab: salvage of a femoral head giant cell tumour. Int J Surg Case Rep. 2014;5(11):783–786.
  • Branstetter DG, Nelson SD, Manivel JC, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18(16):4415–4424.
  • Egerdie B, Saad F, Smith MR, et al. Responder analysis of the effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2012;15(3):308–312.
  • Smith MR, Egerdie B, Toriz NH, et al. For the denosumab HALT prostate cancer study group C. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–755.
  • Ellis GK, Bone HG, Chlebowski R, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–4882.
  • Jiang Z, Shao Z, Zhang Q, et al. Efficacy and safety of denosumab from a phase III, randomized, active-controlled study compared with ZA in patients of Asian ancestry with bone metastases from solid tumors. J Clin Oncol. 2016;34(15):S10116.
  • Smith MR, Saad F, Coleman R, et al. Denosumab and bone metastasis-free survival in men with castration-resistant prostate cancer: results of a global phase 3, randomised, placebo-controlled trial. Lancet. 2012;379(9810):39–46.
  • Smith MR, Saad F, Oudard S, et al. Denosumab and bone metastasis–free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time. J Clin Oncol. 2013;31(30):3800–3806.
  • Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018;19(3):370–381.
  • Chawla S, Henshaw R, Seeger L, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14(9):901–908.
  • [ cited 2020 June 28]. Available from: https://www.drugs.com/history/xgeva.html
  • Infante M, Fabi A, Cognetti F, et al. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019;38(1):12.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Gonzalez-Suarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–107.
  • Schramek D, Leibbrandt A, Sigl V, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.
  • Jones DH, Nakashima T, Sanchez OH. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–696.
  • Walsh MC, Choi Y. Biology of the RANKL–RANK–OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511.
  • Chu GC, Chung LW. RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev. 2014;33(2–3):497–509.
  • Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.
  • Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–546.
  • Yue Z, Yuan Z, Zeng L, et al. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. Faseb J. 2018;32(5):2422–2437.
  • Cheng ML, Fong L. Effects of RANKL-targeted therapy in immunity and cancer. Front Oncol. 2014;3:329.
  • Ahern E, Smyth MJ, Dougall WC, et al. Roles of the RANKL-RANK axis in antitumour immunity - implications for therapy. Nat Rev Clin Oncol. 2018;15(11):676–693.
  • Loi S. The ESMO clinical practise guidelines for early breast cancer: diagnosis, treatment and follow-up: on the winding road to personalized medicine. Ann Oncol. 2019;30(8):1183–1184.
  • Cardoso F, Kyriakides S, Ohno S, et al.; on behalf of the ESMO guidelines committee. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;2019(30):1194–1220.
  • Diep CH, Daniel AR, Mauro LJ, et al. Progesterone action in breast, uterine, and ovarian cancers. J Mol Endocrinol. 2015;54(2):R31–53.
  • Daniel AR, Hagan CR, Lange CA. Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab. 2011;6(3):359–369.
  • Tanos T, Sflomos G, Echeverria PC, et al. Progesterone/RANKL is a major regulatory axis in the human breast. Sci Transl Med. 2013;5(182):182ra55.
  • Joshi PA, Jackson HW, Beristain AG. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–807.
  • Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol. 2019;42(1 suppl 1):215–231.
  • Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science. 2014;343(6178):1470–1475.
  • Armstrong N, Ryder S, Forbes C, et al. A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol. 2019;11:543–561.
  • Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–2416.
  • Widschwendter M, Rosenthal AN, Philpott S, et al. The sex hormone system in carriers of BRCA1/2 mutations: a case-control study. Lancet Oncol. 2013;14(12):1226–1232.
  • Nolan E, Lindeman GJ, Visvader JE. Out-RANKing BRCA1 in mutation carrier. Cancer Res. 2017;77(3):595–600.
  • Cuyàs E, Corominas-Faja B, Muñoz-San María M, et al. BRCA1 haploinsufficiency cell-autonomously activates RANKL expression and generates denosumab-responsive breast cancer-initiating cells. Oncotarget. 2017;8(21):35019–35032.
  • Kiechl S, Schramek D, Widschwendter M. Aberrant regulation of RANKL/OPG in women at high risk of developing breast cancer. Oncotarget. 2017;8(3):3811–3825.
  • Widschwendter M, Burnell M, Fraser L, et al. Osteoprotegerin (OPG), the endogenous inhibitor of receptor activator of NF-κB Ligand (RANKL), is dysregulated in BRCA mutation carriers. EMBioMedicine. 2015;2(10):1331–1339.
  • Zaman T, Sun P, Narod SA, et al. Plasma RANKL levels are not associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Oncotarget. 2019;10(25):2475–2483.
  • Wood CE, Branstetter D, Jacob AP. Progestin effects on cell proliferation pathways in the postmenopausal mammary gland. Breast Cancer Res. 2013;15(4):R62.
  • Sigl V, Owusu-Boaitey K, Joshi PA, et al. RANKL/RANK control Brca1 mutation. Cell Res. 2016;26(7):761–774.
  • Nolan E, Vaillant F, Branstetter D, et al. RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nat Med. 2016;22(8):933–939.
  • [ cited 2020 Mar]. Available from: http://purl.org/au-research/grants/nhmrc/1140715 nhmrc:1140715
  • Odén L, Akbari M, Zaman T, et al. Plasma osteoprotegerin and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Oncotarget. 2016;7(52):86687–86694.
  • Vik A, Brodin EE, Mathiesen EB. Serum osteoprotegerin and future risk of cancer and cancer-related mortality in the general population: the Tromso study. Eur J Epidemiol. 2015;30(3):219–230.
  • Sanger N, Ruckhaberle E, Bianchini G. OPG and PgR show similar cohort specific effects as prognostic factors in ER positive breast cancer. Mol Oncol. 2014;8(7):1196–1207.
  • Park HS, Lee A, Chae BJ, et al. Expression of receptor activator of nuclear factor kappa-B as a poor prognostic marker in breast cancer. J Surg Oncol. 2014;110(7):807–812.
  • Singer CF. Nonsurgical prevention strategies in BRCA1 and BRCA2 mutation carriers. Breast Care. 2020;1–5. DOI:https://doi.org/10.1159/000507503
  • [ cited Oct 2020 11]. Available from: https://www.abcsg.com/studies/open-trials/mammacarzinom/abcsg-50-brca-p/abcsg-50-brca-p-details/
  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386(10001):1353–1361.
  • Hadji P, Coleman RE, Wilson C, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel. Ann Oncol. 2016;27(3):379–390.
  • Gnant M, Pfeiler G, Dubsky PC, et al.; Austrian Breast and Colorectal Cancer Study Group. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9992):433–443.
  • Gnant M, Pfeiler G, Steger GG, et al.; Austrian Breast and Colorectal Cancer Study Group. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019; 20(3):339–351.
  • Coleman RE, Finkelstein D, Barrios CH, et al. Adjuvant denosumab in early breast cancer: first results from the international multicenter randomized phase III placebo-controlled D-CARE study. J Clin Oncol. 2018;36(15):S501.
  • Coleman R, Finkelstein DM, Barrios C, et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2020;21(1):60–72.
  • Nguyen B, Maetens M, Salgado R, et al. Abstract CT101: D-BEYOND: a window of opportunity trial evaluating denosumab, a RANK-ligand (RANKL) inhibitor and its biological effects in young pre-menopausal women diagnosed with early breast cancer. Cancer Res. 2018;78(13 Supplement):CT101–CT101.
  • Gnant M, Harbeck N, Thomssen C. St. Gallen/ Vienna 2017: a brief summary of the consensus discussion about escalation and de-escalation of primary breast cancer treatment. Breast Care (Basel). 2017;12(2):102–107.
  • Curigliano G, Burstein HJ, Winer P, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017;28(8):1700–1712.
  • Thill M, Liedtke C, Solomayer EF, et al. AGO recommendations for the diagnosis and treatment of patients with advanced and metastatic breast cancer: update 2017. Breast Care (Basel). 2017;12(3):184–191.
  • Thill M, Liedtke C, Müller V, et al.; AGO Breast Committee. AGO recommendations for the diagnosis and treatment of patients with advanced and metastatic breast cancer: update 2018. Breast Care (Basel). 2018;13(3):209–215.
  • [ cited 2020 Mar]. Available from: https://www.xgeva.com/hcp/solid-tumors/pivotal-trial-safety
  • Laskowski LK, Goldfarb DS, Howland MA, et al. A RANKL wrinkle: denosumab-induced hypocalcemia. J Med Toxicol. 2016;12(3):305–308.
  • Pittman K, Antill YC, Goldrick A, et al. Denosumab: prevention and management of hypocalcemia, osteonecrosis of the jaw and atypical fractures. Asia Pac J Clin Oncol. 2017;13(4):266–276.
  • Yerram P, Kansagra S, Abdelghany O. Incidence of hypocalcemia in patients receiving denosumab for prevention of skeletal-related events in bone metastasis. J Oncol Pharm Pract. 2016;23(3):179–184.
  • Jalleh R, Basu G, Le Leu R, et al. Denosumab-induced severe hypocalcaemia in chronic kidney disease. Case Rep Nephrol. 2018;2018:7384763.
  • Thongprayoon C, Acharya P, Acharya C, et al. Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: a meta-analysis of observational studies. Osteoporos Int. 2018;29(8):1737–1745.
  • [ cited 2020 June 26]. Available from: https://www.medicines.org.uk/emc/product/4675/smpc
  • Lombard T, Neirinckx V, Rogister B, et al. Medication-related osteonecrosis of the jaw: new insights into molecular mechanisms and cellular therapeutic approaches. Stem Cells Int. 2016;2016:8768162.
  • Ruggiero SL, Dodson TB, Fantasia J, et al. American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw – 2014 update. J Oral Maxillofac Surg. 2014;72:1938–1956.
  • Khan AA, Morrison A, Hanley DA, et al.; International Task Force on Osteonecrosis of the Jaw. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30:3–23.
  • Nifosì AF, Zuccarello M, Nifosì L, et al. Osteonecrosis of the jaw in the era of targeted therapy and immunotherapy in oncology. J Korean Assoc Oral Maxillofac Surg. 2019;45(1):3–8.
  • Svejda B, Muschitz C, Gruber R, et al. Position paper on medication-related osteonecrosis of the jaw (MRONJ). Wien Med Wochenschr. 2016;166(1–2):68–74.
  • Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29(1):1–23.
  • Bone HG, Chapurlat R, Brandi ML, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013;98(11):4483–4492.
  • Henry D, Vadhan-Raj S, Hirsh V, et al. Delaying skeletal-related events in a randomized phase 3 study of denosumab versus zoledronic acid in patients with advanced cancer: an analysis of data from patients with solid tumors. Support Care Cancer. 2014;22(3):679–687.
  • Yang SP, Kim TW, Boland PJ, et al. a retrospective review of atypical femoral fracture in metastatic Bone disease patients receiving Denosumab therapy. Oncologist. 2017;22(4):438–444.
  • Dennison EM, Cooper C, Kanis JA, et al. Fracture risk following intermission of osteoporosis therapy. Osteoporos Int. 2019;30(9):1733–1743.
  • Lamy O, Stoll D, Aubry-Rozier B, et al. Stopping denosumab. Curr Osteoporos Rep. 2019;17(1):8–15.
  • von Keyserlingk C, Hopkins R, Anastasilakis A, et al. Clinical efficacy and safety of denosumab in postmenopausal women with low bone mineral density and osteoporosis: a meta-analysis. Semin Arthritis Rheum. 2011;41(2):178–186.
  • Tovazzi V, Dalla Volta A, Pedersini R, et al. Excess of second tumors in denosumab-treated patients: a metabolic hypothesis. Future Oncol. 2019;15(20):2319–2321.
  • Sachdev JC, Sandoval AC, Jahanzeb M. Update on precision medicine in breast cancer. Cancer Treat Res. 2019;178:45–80.
  • Peters N, Michael Conroy M, O’Reilly S. Adjuvant denosumab in early breast cancer. Lancet Oncol. 2020;21(3):e121.
  • Scimeca M, Bonfiglio R, Urbano N, et al. Adjuvant denosumab in early breast cancer. Lancet Oncol. 2020;21(3):e122.
  • Coleman R, Ying Zhou Y, Chan A. for the D-CARE investigators. Adjuvant denosumab in early breast cancer. Authors’ reply [www.thelancet. Lancet Oncol. 2020;21(3):e125.
  • Hein A, Bayer CM, Schrauder MG, et al. Polymorphisms in the RANK/RANKL genes and their effect on bone specific prognosis in breast cancer patients. Biomed Res Int. 2014;2014:842452.
  • Ferreira A, Alho I, Vendrell I, et al. The prognostic role of RANK SNP rs34945627 in breast cancer patients with bone metastases. Oncotarget. 2016;7(27):41380–41389.
  • Deligiorgi MV, Panayiotidis MI, Griniatsos J, et al. Harnessing the versatile role of OPG in bone oncology: counterbalancing RANKL and TRAIL signaling and beyond. Clin Exp Metastasis. 2020;37(1):13–30.
  • Deligiorgi MV, Panayiotidis MI, Trafalis DT. Combining immune checkpoint inhibitors with denosumab: a new era in repurposing denosumab in oncology? JBUON. 2020;25(1):1–14.
  • Schneeweiss A, Hartkopf AD, Müller V, et al. Update breast cancer 2020 part 1 - early breast cancer: consolidation of knowledge about known therapies. Geburtshilfe Frauenheilkd. 2020;80(3):277–287.
  • Cuyàs E, Martin-Castillo B, Bosch-Barrera J, et al. Metformin inhibits RANKL and sensitizes cancer stem cells to denosumab. Cell Cycle. 2017;16(11):1022–1028.
  • Timotheadou E, Kalogeras KT, Koliou GA, et al. Evaluation of the prognostic value of RANK, OPG, and RANKL mRNA expression in early breast cancer patients treated with anthracycline-based adjuvant chemotherapy. Transl Oncol. 2017;10(4):589–598.
  • Owen S, Ye L, Sanders AJ, et al. Expression profile of receptor activator of nuclear-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) in breast cancer. Anticancer Res. 2013;33(1):199–206.
  • Bhatia P, Sanders MM, Hansen MF. Expression of receptor activator of nuclear factor-kappaB is inversely correlated with metastatic phenotype in breast carcinoma. Clin Cancer Res. 2005;11(1):162–165.
  • Papanastasiou AD, Sirinian C, Kalofonos HP. Identification of novel human receptor activator of nuclear factor-kB isoforms generated through alternative splicing: implications in breast cancer cell survival and migration. Breast Cancer Res. 2012;14(4):R112.
  • Gnant M, Pfeiler G, Frantal S; Austrian breast and colorectal cancer study group. Denosumab in early-stage breast cancer - authors’ reply. Lancet Oncol. 2019;20(5):236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.