160
Views
2
CrossRef citations to date
0
Altmetric
Review

Exploring the effectiveness of incorporating carbon nanotubes into bioengineered scaffolds to improve cardiomyocyte function

, &
Pages 1347-1366 | Received 24 Aug 2020, Accepted 21 Oct 2020, Published online: 30 Oct 2020

References

  • Liu Y, Lu J, Xu G, et al. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating. Mater Sci Eng C Mater Biol Appl. 2016;69:865–874.
  • Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. 2004;94:514–524.
  • Ahadian S, Huyer LD, Estili M, et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2015;52:81–91.
  • Hopley EL, Salmasi S, Kalaskar DM, et al. *Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol Adv. 2014;32(5):1000–1014.
  • Huyer LD, Montgomery M, Zhao Y, et al. Biomaterial based cardiac tissue engineering and its applications. Biomed Mater. 2015;10(3):034004.
  • Chien KR, Domian IJ, Parker KK. Cardiogenesis and the complex biology of regenerative cardiovascular medicine. Science. 2009;322(5907):1494–1497.
  • Kharaziha M, Shin S, Nikkah M, et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35(26):7346–7354.
  • Fleischer S, Dvir T. Tissue engineering on the nanoscale: lessons from the heart. Curr Opin Biotechnol. 2013;24(4):664–671.
  • You J-O, Rafat M, Ye GJC, et al. Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011;11(9):3643–3648.
  • Shin S, Jung S, Zalabany M, et al. A. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369–2380.
  • Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1(2):180–192.
  • De Volder MF, Tawflick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;399(6119):535–539.
  • Demczyk BG, Wang YM, Cumings J, et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng. 2002;334(1–2):173–178.
  • Iijima S, brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes. J Chem Phys. 1996;104(5):2089–2092.
  • Yu MF, Files SB, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett. 2000;84(24):5552–5555.
  • Arjmandi N, Sasanpour P, Rashidian B. CVD synthesis of small-diameter single-walled carbon nanotubes on silicon. Comput Sci Eng Electr Eng. 2009;16(1):61–64.
  • Jagotyen M, Pardue J, Rantell T, et al. Porosity of carbon nanotubes. Adsorpt Sci Technol. 2000;17:289–293.
  • Mooney E, Mackle J, Blond D, et al. The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials. 2012;33(26):6132–6139.
  • Li X, Zhou J, Liu Z, et al. *A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials. 2014;35(22):5679–5688.
  • Mehrabi A, Baheiraei N, Adabi M, et al. Development of a novel electroactive cardiac patch based on carbon nanofibers and gelatin encouraging vascularization. Appl Biochem Biotechnol. 2020;190(3):931–948.
  • Martins A, Eng G, Caridade S, et al. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15(2):635–643.
  • Shokraei N, Asadpour S, Shokraei S, et al. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. JEMT Microsc Res Tech. 2019;82(8):1316–1325.
  • Stout DA, Basu B, Webster T. Poly(lactic–co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater. 2011;7(8):3101–3112.
  • Stout DA, Yoo J, Santiago-Miranda A. Mechanisms of greater cardiomyocyte functions on conductive nanoengineering composites for cardiovascular applications. Int J Nanomedicine. 2012;7:5653–5669.
  • Pok S, Vitale F, Eichmann S, et al. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano. 2014;8(10):9822–9832.
  • Mombini S, Mohammadnejad J, Bakhshandeh B, et al. Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. Int J Biol Macromol. 2019;140:278–287.
  • Sun H, Tang J, Mou Y, et al. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through b1-integrin mediated FAK and RhoA pathway. Acta Biomater. 2016;48:88–99.
  • Sun H, Zhou J, Huang Z, et al. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomedicine. 2017;12:3109–3120.
  • Sun H, Lu S, Jiang X, et al. Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the ß1-integrin-mediated signaling pathway. Biomaterials. 2015;55:84–95.
  • Zhou J, Chen J, Sun H, et al. *Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep. 2014;4(1):3733.
  • Martinelli V, Cellot G, Toma F, et al. *Carbon nanotubes instruct physiological growth and functionally mature syncytia: nongenetic engineering of cardiac myocytes. ACS Nano. 2013;7(7):5746–5756.
  • Takens-Kwak BR, Jongsma HJ, Rook MB, et al. Mechanism of heptanol-induced uncoupling of cardiac gap junctions: a perforated patch-clamp study. Am K Physiol. 1992;262(6):C1531–C1538.
  • Rodriguez-Sinovas A, Garcia-Dorado D, Ruiz-Meana M, et al. Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. Am J Physiol. 2006;290:H648–H656.
  • Mukhopadhyay P, Rajesh M, Batkai S, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol. 2009;296:H1466–H1483.
  • Robinson KR. The responses of cells to electrical fields: a review. J Cell Biol. 1985;101(6):2023–2027.
  • Sarkar D, ankrum JA, Teo GSL, et al. Cellular and extracellular programming of cell fate through engineered intracrine-, paracrine-, and endocrine-like mechanisms. Biomaterials. 2011;32(11):3053–3061.
  • Carpenedo RL, Seaman SA, McDevitt TC. Microsphere size effects on embryoid body incorporation and embryonic stem cell differentiation. J Biomed Mater Res A. 2010;94(2):466–475.
  • Jang MJ, Namgung S, Hong S, et al. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue. Nanotechnology. 2010;21(23):235102.
  • Badie N, Bursac N. Novel micropatterned cardiac cell cultures with realistic ventricular microstructure. Biophys J. 2009;96(9):3873–3885.
  • Iyer RK, Chiu LL, Reis LA, et al. Engineered cardiac tissues. Curr Opin Biotechnol. 2011;22(5):706–714.
  • Ker EDF, Nain AS, Weiss LE, et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials. 2011;32(32):8097–8107.
  • Li L, Klim JR, Derda R, et al. Spatial control of cell fate using synthetic surfaces to potentiate TGF-beta signaling. Proc Natl Acad Sci U S A. 2011;108(29):11745–11750.
  • Roshanbinfar K, Mohammadi Z, Mesgar AS, et al. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater Sci. 2019;7:3906.
  • Dvir T, Timko BP, Brigham MD, et al. Nanowired three-dimensional cardiac patches. Nat.Nanotechnol. 2011;6(11):720–725.
  • Engelmayr GC Jr, Cheng M, Bettinger CJ, et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater. 2008;7(12):1003–1010.
  • Hazeltine LB, Simmons CS, Salick MR, et al. Effects of substrate mechanics on contractility of cardiomyocytes generated from human pluripotent stem cells. Int J Cell Biol. 2012;508294–306:2012.
  • Bhana B, Iyer RK, Chen WL, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng. 2010;105:1148–1160.
  • Shin SR, Bae H, Cha JM, et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 2012;6(1):362–372.
  • McCullen SD, Stevens DR, Roberts WA, et al. Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules. 2007;40(4):997–1003.
  • Szatowski P, Pielichowska K, Blazewicz S. Mechanical and thermal properties of carbon-nanotube reinforced self-healing polyurethanes. J Mater Sci. 2017;52(20):12221–12234.
  • Webster T, Ergun C, Doremus RH, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–483.
  • Kang S, Herzberg M, Rodrigues DF, et al. Antibacterial effects of carbon nanotubes: size does matter. Langmuir. 2008;24(13):6409–6413.
  • Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2008;168(1):58–74.
  • Nygaard UC, Hansen JS, Samuelsen M, et al. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci. 2009;109(1):113–123.
  • Madani SY, Mandel A, Seifalian AM. A concise review of carbon nanotube’s toxicology. Nano Rev a. 2013;3:4.
  • Jeong MY, Walker JS, Brown RD, et al. Afos inhibits phenylephrine-mediated contractile dysfunction by altering phospho-lamban phosphorylation. Am J Physiol: Heart Circ Physiol. 2018;268:H1719–26.
  • Lowes BD, Gilbert EM, Abraham WT, et al. Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med. 2002;346(18):1357–1365.
  • Miyata S, Minobe WA, Bristow MR, et al. Myosin isoform expression in the failing and non-failing human heart. Circ Res. 2000;86(4):386–390.
  • Mariner PD, Luckey SW, Long CS, et al. Yin Yang 1 represses alpha-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochem Biophys Res Commun. 2005;326:79–86.
  • Yue P, Long CS, Austin R, et al. Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype. J Mol Cell Cardiol. 1998;130(8):1615–1630.
  • Hefti MA, Harder BA, Epenberger HM, et al. Signaling pathways in cardiac myocyte hypertrophy. J Mol Cell Cardiol. 1997;29(11):2873–2892.
  • Ng DCH, Ng IHW, Yeap YYC, et al. Opposing actions of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) in regulating microtubule stabilization during cardiac hypertrophy. J Biol Chem. 2001;286(2):1576–1587.
  • Davis LM, Saffitz JE, Beyer EC. Modulation of connexin43 expression: effects on cellular coupling. J Cardiovasc Electrophysiol. 1995;6(2):103–114.
  • Beardslee MA, Laing JG, Beyer EC, et al. Rapid turnover of connexin43 in the adult rat heart. Circ Res. 1998;83(6):629–635.
  • Dupont E, Matsushita T, Kaba RA, et al. Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol. 2001;33(2):359–371.
  • Kostin S, Dammer S, Hein S, et al. Schaper J. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res. 2004;62(2):426–436.
  • Injac R, Perse M, Cerne M, et al. Protective effects of fullerenol C60(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials. 2009;30:1184–1196.
  • Galano A. Carbon nanotubes as free-radical scavengers. J Phys Chem C. 2008;112(24):8922–8927.
  • Newman P, Minett A, Ellis-Behnke R, et al. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 2013;9(8):1139–1158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.