484
Views
8
CrossRef citations to date
0
Altmetric
Review

Biologic and advanced immunomodulating therapeutic options for sarcoidosis: a clinical update

, &
Pages 179-210 | Received 03 Nov 2020, Accepted 15 Jan 2021, Published online: 31 Jan 2021

References

  • Mallbris L, Davies J, Glasebrook A, et al. Molecular insights into fully human and humanized monoclonal antibodies: what are the differences and should dermatologists care? The Journal of Clinical and Aesthetic Dermatology. 2016;9(7):13–15.
  • Statement on sarcoidosis. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS board of directors and by the ERS executive committee, february 1999.. Am J Respir Crit Care Med. 1999;160(2):736–755.
  • Baughman RP, Teirstein AS, Judson MA, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med. 2001;164(10):1885–1889.
  • Moller DR, Rybicki BA, Hamzeh NY, et al. Genetic, Immunologic, and Environmental Basis of Sarcoidosis. Ann Am Thorac Soc. 2017;14(6):S429–S436.
  • Li CW, Tao RJ, Zou DF, et al. Pulmonary sarcoidosis with and without extrapulmonary involvement: a cross-sectional and observational study in China. BMJ Open. 2018;8(2):e018865.
  • Pietinalho A, Hiraga Y, Hosoda Y, et al. The frequency of sarcoidosis in Finland and Hokkaido, Japan. A comparative epidemiological study. Sarcoidosis. 1995;12(1):61–67.
  • Pietinalho A, Ohmichi M, Hiraga Y, et al. The mode of presentation of sarcoidosis in Finland and Hokkaido, Japan. A comparative analysis of 571 Finnish and 686 Japanese patients. Sarcoidosis Vasc Diffuse Lung Dis. 1996;13(2):159–166.
  • Newman LS, Rose CS, Maier LA. Sarcoidosis. N Engl J Med. 1997;336(17):1224–1234.
  • Hunninghake GW, Costabel U, Ando M, et al. ATS/ERS/WASOG statement on sarcoidosis. american thoracic society/european respiratory society/world association of sarcoidosis and other granulomatous disorders. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16(2):149–173.
  • Tavee J, Culver D. Nonorgan manifestations of sarcoidosis. Curr Opin Pulm Med. 2019;25(5):533–538.
  • Crouser ED, Maier LA, Wilson KC, et al. Diagnosis and detection of sarcoidosis. an official american thoracic society clinical practice guideline. Am J Respir Crit Care Med. 2020;201(8):e26–e51.
  • Valeyre D, Prasse A, Nunes H, et al. Sarcoidosis. The Lancet. 2014;383(9923):1155–1167.
  • Rahaghi FF, Baughman RP, Saketkoo LA, et al. Delphi consensus recommendations for a treatment algorithm in pulmonary sarcoidosis. Eur Respir Rev. 2020;29(155):190146.
  • Baughman RP, Scholand MB, Rahaghi FF. Clinical phenotyping: role in treatment isions in sarcoidosis. Eur Respir Rev. 2020;29(155):190145.
  • Baughman RP, Wells A. Advanced sarcoidosis. Current Opinion in Pulmonary Medicine. 2019;25(5):497–504.
  • Gibson GJ, Prescott RJ, Muers MF, et al. British thoracic society sarcoidosis study: effects of long term corticosteroid treatment.. Thorax. 2020;29(155):190146–190147.
  • Baughman RP, Nunes H, Sweiss NJ, et al. Established and experimental medical therapy of pulmonary sarcoidosis. European Respiratory Journal. 2013;41(6):1424–1438.
  • McKinzie BP, Bullington WM, Mazur JE, et al. Efficacy of short-course, low-dose corticosteroid therapy for acute pulmonary sarcoidosis exacerbations. The American Journal of the Medical Sciences. 2006;23(1):1–4.
  • Baughman RP, Lower EE. Steroids for sarcoidosis: how much and for how long? Respiratory Medicine. 2018;138:S5–S6.
  • Beegle SH, Barba K, Gobunsuy R, et al. Current and emerging pharmacological treatments for sarcoidosis: a review.. Drug Design, Development and Therapy. 2013;7:325–338.
  • Schutt AC, Bullington WM, Judson MA. Pharmacotherapy for pulmonary sarcoidosis: a Delphi consensus study. Respiratory Medicine. 2010;104(5):717–723.
  • Judson MA. Corticosteroids in Sarcoidosis. Rheum Dis Clin North Am. 2016;42(1):119–135.
  • Khan NA, Donatelli CV, Tonelli AR, et al. Toxicity risk from glucocorticoids in sarcoidosis patients. Respiratory Medicine. 2017;132:9–14.
  • Huscher D, Thiele K, Gromnica-Ihle E, et al. Dose-related patterns of glucocorticoid-induced side effects. Annals of the Rheumatic Diseases. 2009;68(7):1119–1124.
  • Broos CE, Poell LHC, Looman CWN, et al. No evidence found for an association between prednisone dose and FVC change in newly-treated pulmonary sarcoidosis. Respiratory Medicine. 2018;138:S31–S37.
  • Baughman RP, Grutters JC. New treatment strategies for pulmonary sarcoidosis: antimetabolites, biological drugs, and other treatment approaches. The Lancet Respiratory Medicine. 2011;18(8):1306–1316.
  • Vorselaars ADM, Cremers JP, Grutters JC, et al. Cytotoxic agents in sarcoidosis: which one should we choose? Current Opinion in Pulmonary Medicine. 2014;20(5):479–487.
  • Vorselaars AD, van Moorsel CH, Deneer VH, et al. Current therapy in sarcoidosis, the role of existing drugs and future medicine. <![CDATA[Inflammation & Allergy-Drug Targets]]>. 2013;12(6):369–377.
  • Moor CC, Kahlmann V, Culver DA, et al. Comprehensive care for patients with sarcoidosis. J Clin Med. 2020;9(2):390. .
  • Ma Y, Gal A, Koss M. Reprint of: the pathology of pulmonary sarcoidosis: update. Seminars in Diagnostic Pathology. 2018;35(5):324–333.
  • Broos CE, van Nimwegen M, Hoogsteden HC, et al. Granuloma formation in pulmonary sarcoidosis. Frontiers in Immunology. 2014;20:437.
  • Chen ES, Moller DR. Etiology of sarcoidosis. Clinics in Chest Medicine. 2008;29(3):365–377.
  • Saidha S, Sotirchos ES, Eckstein C. Etiology of sarcoidosis: does infection play a role? The Yale Journal of Biology and Medicine. 2012;85(1):133–141.
  • Gerke AK, Hunninghake G. The immunology of sarcoidosis. Clinics in Chest Medicine. 2020;82(3):612–621.
  • Iannuzzi MC. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA. 2018;35(5):324–333.
  • Facco M, Cabrelle A, Teramo A, et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. 2011;66(2):144–150.
  • Oswald-Richter KA, Drake WP. The etiologic role of infectious antigens in sarcoidosis pathogenesis. Seminars in Respiratory and Critical Care Medicine. 1965;6(3):303–306.
  • Oswald-Richter KA, Beachboard DC, Seeley EH, et al. Dual analysis for mycobacteria and propionibacteria in sarcoidosis BAL. Journal of Clinical Immunology. 2012;32(5):1129–1140.
  • Drake WP, Pei Z, Pride DT, et al. Molecular analysis of sarcoidosis tissues for mycobacterium species DNA. Emerging Infectious Diseases. 2002;8(11):1334–1341.
  • Newman LS, Rose CS, Bresnitz EA, et al. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med. 2004 15;170(12):1324–1330.
  • Iannuzzi MC. Genetics of sarcoidosis. Semin Respir Crit Care Med. 2007;28(1):15–21.
  • Barnard J, Rose C, Newman L, et al. Job and industry classifications associated with sarcoidosis in A case-control etiologic study of sarcoidosis (ACCESS). J Occup Environ Med. 2005;47(3):226–234.
  • Eishi Y, Suga M, Ishige I, et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol. 2002;40(1):198–204.
  • Goto H, Usui Y, Umazume A, et al. as a possible pathogen of granuloma in patients with ocular sarcoidosis. Br J Ophthalmol. 2017;101(11):1510–1513.
  • Hiramatsu J, Kataoka M, Nakata Y, et al. Propionibacterium acnes DNA detected in bronchoalveolar lavage cells from patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20(3):197–203.
  • Yang G, Eishi Y, Raza A, et al. Propionibacterium acnes-associated neurosarcoidosis: a case report with review of the literature. Neuropathology. 2018;38(2):159–164.
  • Chen ES, Wahlström J, Song Z, et al. T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen in systemic sarcoidosis. J Immunol. 2008;181(12):8784–8796.
  • Oswald-Richter KA, Culver DA, Hawkins C, et al. Cellular responses to mycobacterial antigens are present in bronchoalveolar lavage fluid used in the diagnosis of sarcoidosis. Infect Immun. 2009;77(9):3740–3748.
  • Oswald-Richter K, Sato H, Hajizadeh R, et al. Mycobacterial ESAT-6 and katG are recognized by sarcoidosis CD4+ T cells when presented by the American sarcoidosis susceptibility allele, DRB1*1101. J Clin Immunol. 2010;30(1):157–166.
  • Nikoskelainen J, Hannuksela M, Palva T. Antibodies to Epstein-Barr virus and some other herpesviruses in patients with sarcoidosis, pulmonary tuberculosis and erythema nodosum. Scand J Infect Dis. 1974;6(3):209–216.
  • Prezant DJ, Dhala A, Goldstein A, et al. The incidence, prevalence, and severity of sarcoidosis in new york city firefighters. Chest. 1999;116(5):1183–1193.
  • Kern DG, Neill MA, Wrenn DS, et al. Investigation of a unique time-space cluster of sarcoidosis in firefighters. Am Rev Respir Dis. 1993;148(4 Pt 1):974–980.
  • Deubelbeiss U, Gemperli A, Schindler C, et al. Prevalence of sarcoidosis in Switzerland is associated with environmental factors. Eur Respir J. 2010;35(5):1088–1097.
  • Huizar I, Malur A, Midgette YA, et al. Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes. Am J Respir Cell Mol Biol. 2011;45(4):858–866.
  • Bunte K, Beikler T. Th17 Cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int J Mol Sci. 2019;20(14): 3394.
  • Moller DR, Forman JD, Liu MC, et al. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J Immunol. 1996;156(12):4952–4960.
  • Shigehara K, Shijubo N, Ohmichi M, et al. IL-12 and IL-18 are increased and stimulate IFN-gamma production in sarcoid lungs. J Immunol. 2001;166(1):642–649.
  • Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–189.
  • Zissel G, Müller-Quernheim J. Cellular players in the immunopathogenesis of sarcoidosis. Clin Chest Med. 2015;36(4):549–560.
  • Bayer AL, Pugliese A, Malek TR, et al. 2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res. 2013;57(1–3):197–209.
  • Nelson BH, Willerford DM. Biology of the interleukin-2 receptor. Adv Immunol. 1998;70:1–81.
  • Kumar A, Moreau JL, Gibert M, et al. Internalization of interleukin 2 (IL-2) by high affinity IL-2 receptors is required for the growth of IL-2-dependent T cell lines. J Immunol. 1987;139(11):3680–3684.
  • Vanmaris RMM, Rijkers GT. Biological role of the soluble interleukin-2 receptor in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2017;34(2):122–129.
  • Vorselaars AD, van Moorsel CH, Zanen P, et al. ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy. Respir Med. 2015;109(2):279–285.
  • Ogata-Suetsugu S, Hamada N, Takayama K, et al. The clinical value of serum soluble interleukin-2 receptor in pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2017;34(1):41–47.
  • Lawrence EC, Berger MB, Brousseau KP, et al. Elevated serum levels of soluble interleukin-2 receptors in active pulmonary sarcoidosis: relative specificity and association with hypercalcemia. Sarcoidosis. 1987;4(2):87–93.
  • Keicho N, Kitamura K, Takaku F, et al. Serum concentration of soluble interleukin-2 receptor as a sensitive parameter of disease activity in sarcoidosis. Chest. 1990;98(5):1125–1129.
  • Ina Y, Takada K, Sato T, et al. Soluble interleukin 2 receptors in patients with sarcoidosis. Possible Origin Chest. 1992;102(4):1128–1133.
  • Müller-Quernheim J, Pfeifer S, Strausz J, et al. Correlation of clinical and immunologic parameters of the inflammatory activity of pulmonary sarcoidosis. Am Rev Respir Dis. 1991;144(6):1322–1329.
  • Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–1133.
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–238.
  • Zissel G, Homolka J, Schlaak J, et al. Anti-inflammatory cytokine release by alveolar macrophages in pulmonary sarcoidosis. Am J Respir Crit Care Med. 1996;154(3 Pt 1):713–719.
  • Korn T, Oukka M, Kuchroo V, et al. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19(6):362–371.
  • Weinberg I, Vasiliev L, Gotsman I. Anti-dsDNA antibodies in sarcoidosis. Semin Arthritis Rheum. 2000;29(5):328–331.
  • Kobak S, Yilmaz H, Sever F, et al. The prevalence of antinuclear antibodies in patients with sarcoidosis. Autoimmune Dis. 2014;2014:351852.
  • Ueda-Hayakawa I, Tanimura H, Osawa M, et al. Elevated serum BAFF levels in patients with sarcoidosis: association with disease activity. Rheumatology (Oxford). 2013;52(9):1658–1666.
  • Fischer A, Nothnagel M, Franke A, et al. Association of inflammatory bowel disease risk loci with sarcoidosis, and its acute and chronic subphenotypes. Eur Respir J. 2011;37(3):610–616.
  • Baughman RP, Judson MA, Teirstein A, et al. Presenting characteristics as predictors of duration of treatment in sarcoidosis. QJM. 2006;99(5):307–315.
  • Baughman RP, Nagai S, Balter M, et al. Defining the clinical outcome status (COS) in sarcoidosis: results of WASOG Task Force. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(1):56–64.
  • Johns CJ, Michele TM. The clinical management of sarcoidosis. A 50-year experience at the johns hopkins hospital. Medicine (Baltimore). 1999;78(2):65–111.
  • Saketkoo LA, Baughman RP. Biologic therapies in the treatment of sarcoidosis. Expert Rev Clin Immunol. 2016;12(8):817–825.
  • Taflin C, Miyara M, Nochy D, et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am J Pathol. 2009;174(2):497–508.
  • Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med. 2006;203(2):359–370.
  • Rappl G, Pabst S, Riemann D, et al. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol. 2011;140(1):71–83.
  • Oswald-Richter KA, Richmond BW, Braun NA, et al. Reversal of global CD4+ subset dysfunction is associated with spontaneous clinical resolution of pulmonary sarcoidosis. J Immunol. 2013;190(11):5446–5453.
  • Prasse A, Zissel G, Lützen N, et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med. 2010;182(4):540–548.
  • Prokop S, Heppner FL, Goebel HH, et al. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am J Pathol. 2011;178(3):1279–1286.
  • Kunkel SL, Lukacs NW, Strieter RM, et al. Th1 and Th2 responses regulate experimental lung granuloma development. Sarcoidosis Vasc Diffuse Lung Dis. 1996;13(2):120–128.
  • Chen ES, Song Z, Willett MH, et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am J Respir Crit Care Med. 2010;181(4):360–373.
  • Baughman RP, Drent M, Kavuru M, et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am J Respir Crit Care Med. 2006;174(7):795–802.
  • Sweiss NJ, Noth I, Mirsaeidi M, et al. Efficacy results of a 52-week trial of adalimumab in the treatment of refractory sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(1):46–54.
  • Tuchinda C, Wong HK. Etanercept for chronic progressive cutaneous sarcoidosis. J Drugs Dermatol. 2006;5(6):538–540.
  • Sweiss NJ, Lower EE, Mirsaeidi M, et al. Rituximab in the treatment of refractory pulmonary sarcoidosis. Eur Respir J. 2014;43(5):1525–1528.
  • Sharp M, Donnelly SC, Moller DR. Tocilizumab in sarcoidosis patients failing steroid sparing therapies and anti-TNF agents. Respir Med X. 2019;1:100004.
  • Judson MA, Boan AD, Lackland DT. The clinical course of sarcoidosis: presentation, diagnosis, and treatment in a large white and black cohort in the United States. Sarcoidosis Vasc Diffuse Lung Dis. 2012;29(2):119–127.
  • Baughman RP, Judson MA, AU W. The indications for the treatment of sarcoidosis: wells law. Sarcoidosis Vasc Diffuse Lung Dis. 2017;34:280–282.
  • Wells AU. Sarcoidosis: a benign disease or a culture of neglect? Respir Med. 2018;144S:S1–S2.
  • Swigris JJ, Olson AL, Huie TJ, et al. Sarcoidosis-related mortality in the United States from 1988 to 2007. Am J Respir Crit Care Med. 2011;183(11):1524–1530.
  • Baughman RP, Winget DB, Bowen EH, et al. Predicting respiratory failure in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis. 1997;14(2):154–158.
  • Hu X, Carmona EM, Yi ES, et al. Causes of death in patients with chronic sarcoidosis.. Sarcoidosis Vasc Diffuse Lung Dis. 2016;33(3):275–280.
  • Perry A, Vuitch F. Causes of death in patients with sarcoidosis. A morphologic study of 38 autopsies with clinicopathologic correlations.. Archives of Pathology & Laboratory Medicine. 1995;119(2):167–172.
  • Gribbin J, Hubbard RB, Le Jeune I, et al. Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK. Thorax. 2006;61(11):980–985.
  • Judson MA, Chaudhry H, Louis A, et al. The effect of corticosteroids on quality of life in a sarcoidosis clinic: the results of a propensity analysis. Respiratory Medicine. 2015;109(4):526–531.
  • Brito-Zeron P, Perez-Alvarez R, Pallares L, et al. Sarcoidosis: an update on current pharmacotherapy options and future directions. Expert Opinion on Pharmacotherapy. 2016;17(18):2431–2448. .
  • Baughman RP, Winget DB, Lower EE. Methotrexate is steroid sparing in acute sarcoidosis: results of a double blind, randomized trial.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2000;17(1):60–66.
  • Cremers JP, Drent M, Bast A, et al. Multinational evidence-based World Association of Sarcoidosis and Other Granulomatous Disorders recommendations for the use of methotrexate in sarcoidosis: integrating systematic literature research and expert opinion of sarcoidologists worldwide. Current Opinion in Pulmonary Medicine. 2013;19(5):545–561.
  • Vorselaars ADM, Wuyts WA, Vorselaars VMM, et al. Methotrexate vs azathioprine in second-line therapy of sarcoidosis. Chest. 2013;144(3):805–812.
  • Lewis SJ, Ainslie GM, Bateman ED, et al. Efficacy of azathioprine as second-line treatment in pulmonary sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 1999;16(1):87–92.
  • Majithia V, Sanders s, Harisdangkul V, et al. Successful treatment of sarcoidosis with leflunomide. Rheumatology (Oxford). 2003;42(5):700–702.
  • Baughman RP, Lower EE. Leflunomide for chronic sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2004;21(1):43–48.
  • Sahoo DH, Bandyopadhyay D, Xu M, et al. Effectiveness and safety of leflunomide for pulmonary and extrapulmonary sarcoidosis. European Respiratory Journal. 2011;38(5):1145–1150.
  • Brill A-K, Ott SR, Geiser T. Effect and safety of mycophenolate mofetil in chronic pulmonary sarcoidosis: a retrospective study. Respiration. 2013;86(5):376–383.
  • Androdias G, Maillet D, Marignier R, et al. Mycophenolate mofetil may be effective in CNS sarcoidosis but not in sarcoid myopathy. Neurology. 2011;76(13):1168–1172.
  • Zaidi AA, DeVita MV, Michelis MF, et al. Mycophenolate mofetil as a steroid-sparing agent in sarcoid-associated renal disease. Clinical Nephrology. 2015;83 (2015)(1):41–44.
  • Bitoun S, Bouvry D, Borie R, et al. Treatment of neurosarcoidosis: a comparative study of methotrexate and mycophenolate mofetil. Neurology. 2016;87(24):2517–2521.
  • Drent M, Cremers JP, sen TL, et al. Practical eminence and experience-based recommendations for use of TNF-alpha inhibitors in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(2):91–107.
  • Bandyopadhyay D, Judson M. Emerging and potential treatment options for sarcoidosis. Expert Opin Orphan Drugs. 2018;6(1):17–33.
  • Baughman RP, Drent M, Kavuru M. Infliximab for the therapy of chronic sarcoidosis, Baughman RP, Drent M, Kavuru M et al.: infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. . American Journal of Respiratory and Critical Care Medicine. 2006;174(7):795–802.
  • Jamilloux Y, Cohen-Aubart F, Chapelon-Abric C, et al. Efficacy and safety of tumor necrosis factor antagonists in refractory sarcoidosis: a multicenter study of 132 patients. Semin Arthritis Rheum. 2017;47(2):288–294.
  • Gelfand JM, Bradshaw MJ, Stern BJ, et al. Infliximab for the treatment of CNS sarcoidosis: a multi-institutional series. Neurology. 2017;89(20):2092–2100.
  • Baughman RP, Judson MA, Lower EE, et al. Infliximab for chronic cutaneous sarcoidosis: a subset analysis from a double-blind randomized clinical trial.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2016;32(4):289–295.
  • Crommelin HA, van der Burg LM, Vorselaars ADM, et al. Efficacy of adalimumab in sarcoidosis patients who developed intolerance to infliximab. Respiratory Medicine. 2016;115:72–77.
  • Pariser RJ, Paul J, Hirano S, et al. A double-blind, randomized, placebo-controlled trial of adalimumab in the treatment of cutaneous sarcoidosis. Journal of the American Academy of Dermatology. 2013;68(5):765–773.
  • Harper LJ, McCarthy M, Ribeiro Neto ML, et al. Infliximab for refractory cardiac sarcoidosis. Am J Cardiol. 2019;124(10):1630–1635.
  • Zella S, Kneiphof J, Haghikia A, et al. Successful therapy with rituximab in three patients with probable neurosarcoidosis. Therapeutic Advances in Neurological Disorders. 2018;11:1756286418805732.
  • Cinetto F, Compagno N, Scarpa R, et al. Rituximab in refractory sarcoidosis: a single centre experience. Clinical and Molecular Allergy. 2015;13(1):19.
  • Krause ML, Cooper LT, Chareonthaitawee P, et al. Successful use of rituximab in refractory cardiac sarcoidosis. Rheumatology (Oxford). 2016;55(1):189–191.
  • Lower EE, Baughman RP, Kaufman AH. Rituximab for refractory granulomatous eye disease.. Clinical Ophthalmology (Auckland, N.Z.). 2012;6:1613–1618.
  • Judson MA, Baughman RP, Costabel U, et al. Safety and efficacy of ustekinumab or golimumab in patients with chronic sarcoidosis. European Respiratory Journal. 2014;44(5):1296–1307.
  • El Jammal T, Jamilloux Y, Gerfaud-Valentin M, et al. <p>Refractory Sarcoidosis: a Review. <![cdata[therapeutics and Clinical Risk Management]]>. 2020;16:323–345.
  • Chopra A, Nautiyal A, Kalkanis A, et al. Drug-Induced Sarcoidosis-Like Reactions. Chest. 2018;154(3):664–677.
  • Mitoma H, Horiuchi T, Tsukamoto H, et al. Molecular mechanisms of action of anti-TNF-α agents – comparison among therapeutic TNF-α antagonists. Cytokine. 2018;101:56–63.
  • Strand V, Balsa A, Al-Saleh J, et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 2017;31(4):299–316.
  • Marques IB, Giovannoni G, Marta M. Mononeuritis multiplex as the first presentation of refractory sarcoidosis responsive to etanercept. BMC Neurol. 2014;14(1):237.
  • Wijnen PA, Cremers JP, Nelemans PJ, et al. Association of the TNF- G-308A polymorphism with TNF-inhibitor response in sarcoidosis. Eur Respir J. 2014;43(6):1730–1739.
  • Singh JA, Furst DE, Bharat A, et al. 2012 update of the 2008 american college of rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care & Research. 2012 ;64(5):625–639.
  • Furst DE, Keystone EC, So AK, et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2012: table 1. Ann Rheum Dis. 2013;72(Suppl 2):22–34.
  • Baughman RP, Lower EE. Infliximab for refractory sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2001;18(1):70–74.
  • Yee AMF, Pochapin MB. Treatment of complicated sarcoidosis with infliximab anti–tumor necrosis factor-α therapy. Annals of Internal Medicine. 2001;135(1):27–31.
  • Rossman MD, Newman LS, Baughman RP, et al. A double-blinded, randomized, placebo-controlled trial of infliximab in subjects with active pulmonary sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2006;23(3):201–208.
  • Hostettler KE, Studler U, Tamm M, et al. Long-term treatment with infliximab in patients with sarcoidosis. Respiration. 2012;83(3):218–224.
  • Vorselaars ADM, Crommelin HA, Deneer VHM, et al. Effectiveness of infliximab in refractory FDG PET-positive sarcoidosis. European Respiratory Journal. 2015;46(1):175–185.
  • Aguiar M, Marçal N, Mendes AC, et al. Infliximab no tratamento da sarcoidose - Experiência de um hospital central. Rev Port Pneumol. 2011;17(2):85–93.
  • Crouser ED, Lozanski G, Fox CC, et al. The CD4 + lymphopenic sarcoidosis phenotype is highly responsive to anti-tumor necrosis factor-α therapy. Chest. 2010;137(6):1432–1435.
  • Jounieaux F, Chapelon C, Valeyre D, et al. Infliximab et sarcoïdose chronique. L’expérience française à propos de 31 cas. Revue des Maladies Respiratoires. 2010;27(7):685–692.
  • Keijsers RG, Verzijlbergen EJ, van den Bosch JM, et al. 18F-FDG PET as a predictor of pulmonary function in sarcoidosis.. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(2):123–129.
  • Pritchard C. Tumour necrosis factor inhibitor treatment for sarcoidosis refractory to conventional treatments: a report of five patients. . Annals of the Rheumatic Diseases. 2004;63(3):318–320.
  • Saleh S, Ghodsian S, Yakimova V, et al. Effectiveness of infliximab in treating selected patients with sarcoidosis. Respiratory Medicine. 2006;100(11):2053–2059.
  • Vorselaars AD, Verwoerd A, van Moorsel CH, et al. Prediction of relapse after discontinuation of infliximab therapy in severe sarcoidosis. European Respiratory Journal. 2014;43(2):602–609.
  • Russell E, Luk F, Manocha S, et al. Long term follow-up of infliximab efficacy in pulmonary and extra-pulmonary sarcoidosis refractory to conventional therapy. Seminars in Arthritis and Rheumatism. 2013;43(1):119–124.
  • Sweiss NJ, Barnathan ES, Lo K, et al. C-reactive protein predicts response to infliximab in patients with chronic sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2010;27(1):49–56.
  • Baughman RP, Shipley R, Desai S, et al. Changes in chest roentgenogram of sarcoidosis patients during a clinical trial of infliximab therapy: comparison of different methods of evaluation. Chest. 1999;16(1):526–535.
  • Judson MA, Baughman RP, Costabel U, et al. Efficacy of infliximab in extrapulmonary sarcoidosis: results from a randomised trial. European Respiratory Journal. 2013;86(5):376–383.
  • Adler BL, Wang CJ, Bui T-L, et al. Anti-tumor necrosis factor agents in sarcoidosis: a systematic review of efficacy and safety. Semin Arthritis Rheum. 2011;76(13):1093–1104.
  • Baughman RP. Tumor necrosis factor inhibition in treating sarcoidosis: the American experience. Revista Portuguesa de. 2006;Pneumologia 174(7):S47–S50.
  • Panselinas E, Rodgers JK, Judson MA. Clinical outcomes in sarcoidosis after cessation of infliximab treatment. Respirology. 2016;115(4):72–77.
  • Chapelon-Abric C, Saadoun D, Biard L, et al. Long-term outcome of infliximab in severe chronic and refractory systemic sarcoidosis: a report of 16 cases.. Clinical and Experimental Rheumatology. 2015;33(4):509–515.
  • Stagaki E, Mountford WK, Lackland DT, et al. The treatment of lupus pernio: results of 116 treatment courses in 54 patients. Chest. 2009;135(2):468–476.
  • Heidelberger V, Ingen-Housz-Oro S, Marquet A, et al. Efficacy and tolerance of anti–tumor necrosis factor α agents in cutaneous sarcoidosis. JAMA Dermatology. 2012;6(7):681–685.
  • Sweiss NJ, Welsch MJ, Curran JJ, et al. Tumor necrosis factor inhibition as a novel treatment for refractory sarcoidosis. Arthritis & Rheumatism. 2020;16(5):323–345.
  • Sodhi M, Pearson K, White ES, et al. Infliximab therapy rescues cyclophosphamide failure in severe central nervous system sarcoidosis. Respiratory Medicine. 2009;103(2):268–273.
  • Moravan M, Segal BM. Treatment of CNS sarcoidosis with infliximab and mycophenolate mofetil. Neurology. 2009;72(4):337–340.
  • Santos E, Shaunak S, Renowden S, et al. Treatment of refractory neurosarcoidosis with Infliximab. Journal of Neurology, Neurosurgery & Psychiatry. 2014;43(6):1730–1739.
  • Riancho-Zarrabeitia L, Delgado-Alvarado M, Riancho J, et al. Anti-TNF-α therapy in the management of severe neurosarcoidosis: a report of five cases from a single centre and literature review.. Clin Exp Rheumatol. 2014;32(2):275–284.
  • Fritz D, Timmermans WMC, van Laar JAM, et al. Infliximab treatment in pathology-confirmed neurosarcoidosis. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e847.
  • Cohen Aubart F, Bouvry D, Galanaud D, et al. Long-term outcomes of refractory neurosarcoidosis treated with infliximab. Journal of Neurology. 2013;43(1):891–897.
  • Riancho-Zarrabeitia L, Calvo-Río V, Blanco R, et al. Anti-TNF-α therapy in refractory uveitis associated with sarcoidosis: multicenter study of 17 patients. Semin Arthritis Rheum. 2009;136(2):526–535.
  • Baughman RP, Bradley DA, Lower EE. Infliximab in chronic ocular inflammation. IntJournal of Clinical Pharmacology and Therapeutics. 2005;43(1):7–11.
  • Baughman RP, Lower EE, Ingledue R, et al. Management of ocular sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2012;29(1):26–33.
  • Vallet H, Seve P, Biard L, et al. Infliximab Versus Adalimumab in the Treatment of Refractory Inflammatory Uveitis: a Multicenter Study From the French Uveitis Network. Arthritis Rheumatol. 2008;31(6):1189–1196.
  • Fabiani C, Vitale A, Rigante D, et al. Comparative efficacy between adalimumab and infliximab in the treatment of non-infectious intermediate uveitis, posterior uveitis, and panuveitis: a retrospective observational study of 107 patients. Clin Rheumatol. 2007;13(2):407–415.
  • Mann DL, McMurray JJV, Packer M, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2009;14(4):522–528.
  • Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial.. Circulation. 2003;107(25):3133–3140.
  • Uthman I, Touma Z, Khoury M. Cardiac sarcoidosis responding to monotherapy with infliximab. Clinical Rheumatology. 2007;26(11):2001–2003.
  • Barnabe C, McMeekin J, Howarth A, et al. Successful treatment of cardiac sarcoidosis with infliximab.. The Journal of Rheumatology. 2008;35(8):1686–1687.
  • Zhou Y, Lower EE, Li H, et al. Clinical characteristics of patients with bone sarcoidosis. Semin Arthritis Rheum. 2017;47(1):143–148.
  • Doty JD, Mazur JE, Judson MA. Treatment of sarcoidosis with infliximab. Chest. 2005;127(3):1064–1071.
  • Tavee JO, Karwa K, Ahmed Z, et al. Sarcoidosis-associated small fiber neuropathy in a large cohort: clinical aspects and response to IVIG and anti-TNF alpha treatment. Respiratory Medicine. 2013;41:135–138.
  • Hoitsma E, Faber CG, Reulen JPH, et al. Improvement of small fiber neuropathy in a sarcoidosis patient after treatment with infliximab.. Circulation. 2004;109(13):1594–1602.
  • Elfferich MD, Nelemans PJ, Ponds RW, et al. Everyday cognitive failure in sarcoidosis: the prevalence and the effect of Anti-TNF-α treatment. Respiration. 2010;80(3):212–219.
  • Judson MA. Quality of life in sarcoidosis. Semin Respir Crit Care Med. 2017;38(4):546–558.
  • Obi ON. Health-related quality of life in sarcoidosis. Semin Respir Crit Care Med. 2020;41(5):716–732.
  • Maneiro JR, Salgado E, Gomez-Reino JJ, et al. Efficacy and safety of TNF antagonists in sarcoidosis: data from the Spanish registry of biologics BIOBADASER and a systematic review. Seminars in Arthritis and Rheumatism. 2012;42(1):89–103.
  • Baughman RP, Lower EE, Drent M. Inhibitors of tumor necrosis factor (TNF) in sarcoidosis: who, what, and how to use them.. Sarcoidosis, Vasculitis, and Diffuse Lung diseases : Official Journal of WASOG. 2012;42(1):76–89.
  • Schimmelpennink MC, Vorselaars ADM, Veltkamp M, et al. Quantification of pulmonary disease activity in sarcoidosis measured with 18F-FDG PET/CT: sUVmax versus total lung glycolysis. EJNMMI Research. 2008;25(2):54.
  • Muers MF, Middleton WG, Gibson GJ, et al. A simple radiographic scoring method for monitoring pulmonary sarcoidosis: relations between radiographic scores, dyspnoea grade and respiratory function in the british thoracic society study of long-term corticosteroid treatment.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 1997;14(1):46–56.
  • Judson MA, Baughman RP, Costabel U, et al. The potential additional benefit of infliximab in patients with chronic pulmonary sarcoidosis already receiving corticosteroids: a retrospective analysis from a randomized clinical trial. Respiratory Medicine. 2014;108(1):189–194.
  • Wijnen PA, Nelemans PJ, Verschakelen JA, et al. The role of tumor necrosis factor alpha G-308A polymorphisms in the course of pulmonary sarcoidosis. Tissue Antigens. 2010;75(3):262–268.
  • Seitzer U, Swider C, Stüber F, et al. Tumour necrosis factor alpha promoter gene polymorphism in sarcoidosis. Cytokine. 1997;9(10):787–790.
  • Lower EE, Sturdivant M, Grate L, et al. Use of third-line therapies in advanced sarcoidosis. Clin Exp Rheumatol. 2019;38(5):834–840.
  • Baughman RP, Lower EE. Features of sarcoidosis associated with chronic disease.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2015;31(4):275–281.
  • Gottlieb JE, Israel HL, Steiner RM, et al. Outcome in sarcoidosis. The relationship of relapse to corticosteroid therapy. Chest. 1997;111(3):623–631.
  • Alok N, Zia H, Ajmal K, et al. Experience of sarcoidosis and factors predicting relapse at a tertiary care institute in North India. Indian J Rheumatol. 2019;14(4):265–270.
  • Crommelin HA, Vorselaars AD, van Moorsel CH, et al. Anti-TNF therapeutics for the treatment of sarcoidosis. Immunotherapy. 2014;6(10):1127–1143.
  • Judson MA. Advances in the diagnosis and treatment of sarcoidosis. F1000Prime Reports. 2014;6:89.
  • Milman N, Graudal N, Loft A, et al. Effect of the TNF-α inhibitor adalimumab in patients with recalcitrant sarcoidosis: a prospective observational study using FDG-PET. The Clinical Respiratory Journal. 2012;6(4):238–247.
  • Erckens RJ, Mostard RL, Wijnen PA, et al. Adalimumab successful in sarcoidosis patients with refractory chronic non-infectious uveitis. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2012;250(5):713–720.
  • Rosenthal DG, Parwani P, Murray TO, et al. Long-term corticosteroid-sparing immunosuppression for cardiac sarcoidosis. J Am Heart Assoc. 2019;8(18):e010952.
  • Goto H, Zako M, Namba K, et al. Adalimumab in active and inactive, non-infectious uveitis: global results from the VISUAL I and VISUAL II Trials. Ocul Immunol Inflamm. 2019;27(1):40–50.
  • Jaffe GJ, Dick AD, Brezin AP, et al. Adalimumab in patients with active noninfectious uveitis. N Engl J Med. 2016;375(10):932–943.
  • Fabiani C, Sota J, Rigante D, et al. Efficacy of adalimumab and infliximab in recalcitrant retinal vasculitis inadequately responsive to other immunomodulatory therapies. Clinical Rheumatology. 2018;37(10):2805–2809.
  • Bitossi A, Bettiol A, Silvestri E, et al. Adalimumab accounts for long-term control of noninfectious uveitis also in the absence of concomitant DMARD treatment: a multicenter retrospective study. Mediators of Inflammation. 2019;2019:1623847.
  • Fabiani C, Vitale A, Emmi G, et al. Long-term retention rates of adalimumab and infliximab in non-infectious intermediate, posterior, and panuveitis. Clinical Rheumatology. 2019;38(1):63–70.
  • Miller CT, Sweiss NJ, Lu Y. FDG PET/CT evidence of effective treatment of cardiac sarcoidosis with adalimumab. Clinical Nuclear Medicine. 2016;41(5):417–418.
  • Patel SR. Systemic sarcoidosis with bone marrow involvement responding to therapy with adalimumab: a case report. J Med Case Rep. 2009;3(1):8573.
  • Hasni SA, Kunz D, Finzel K, et al. Osseous sarcoidosis treated with tumor necrosis factor-inhibitors: case report and review of the literature. Spine (Phila Pa 1976). 2010;35(18):E904–7.
  • Kamphuis LS, Lam-Tse W-K, Dik WA, et al. Efficacy of adalimumab in chronically active and symptomatic patients with sarcoidosis. American Journal of Respiratory and Critical Care Medicine. 2011;184(10):1214–1216.
  • Alawneh D, Al-Shyoukh A, Edrees A. TNF inhibitor treating osseous sarcoidosis and dactylitis: case and literature review. Clinical Rheumatology. 2020;39(7):2219–2222.
  • Banse C, Bisson-Vaivre B-V, Kozyreff-Meurice M, et al. No impact of tumor necrosis-factor antagonists on the joint manifestations of sarcoidosis. International Journal of General Medicine. 2013;6:605–611.
  • Lower EE, Sturdivant M, Baughman RP. Presence of onconeural antibodies in sarcoidosis patients with parasarcoidosis syndrome.. Sarcoidosis Vasc Diffuse Lung Dis. 2019;36(4):254–260.
  • Utz JP, Limper AH, Kalra S, et al. Etanercept for the treatment of stage II and III progressive pulmonary sarcoidosis. Chest. 2003;124(1):177–185.
  • Baughman RP, Lower EE, Bradley DA, et al. Etanercept for refractory ocular sarcoidosis: results of a double-blind randomized trial. Chest. 2005;128(2):1062–2047.
  • Sandborn WJ, Hanauer SB, Katz S, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2001;121(5):1088–1094.
  • Storch I, Rosoff L, Katz S. Sarcoidosis and inflammatory bowel disease. Journal of Clinical Gastroenterology. 2001;33(4):345.
  • Brunner J, Sergi C, Müller T, et al. Juvenile sarcoidosis presenting as Crohn’s disease. European Journal of Pediatrics. 2006;165(6):398–401.
  • Bhamra K, Stevens R. Pulmonary sarcoidosis following etanercept treatment.. Case Reports in Rheumatology. 2012;2012:724013.
  • Clementine RR, Lyman J, Zakem J, et al. Tumor necrosis factor-alpha antagonist-induced sarcoidosis. JCR: Journal of Clinical Rheumatology. 2010;16(6):274–279.
  • ock A, Van Assche G, Vermeire S, et al. Sarcoidosis-like lesions: another paradoxical reaction to Anti-TNF Therapy? J Crohns Colitis. 2017;11(3):378–383.
  • Cathcart S, Sami N, Elewski B. Sarcoidosis as an adverse effect of tumor necrosis factor inhibitors.. Journal of Drugs in Dermatology : JDD. 2012;11(5):609–612.
  • Suzuki J, Goto H. Uveitis associated with sarcoidosis exacerbated by etanercept therapy. Japanese Journal of Ophthalmology. 2009;53(4):439–440.
  • Sawahata M, Sigiyama Y, Yamasawa H, et al. Sarcoidosis during etanercept treatment for rheumatoid arthritis in women with a history of bilateral oophorectomy.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2016;33(2):178–181.
  • Cuchacovich R, Hagan J, Khan T, et al. Tumor necrosis factor-alpha (TNF-α)-blockade-induced hepatic sarcoidosis in psoriatic arthritis (PsA): case report and review of the literature. Clinical Rheumatology. 2011;30(1):133–137.
  • Wendling D, Nueffer JP. Muscular sarcoidosis under anti-TNF treatment in ankylosing spondylitis. Joint Bone Spine. 2018;85(6):769.
  • Berrios I, Jun-O’Connell A, Ghiran S, et al. A case of neurosarcoidosis secondary to treatment of etanercept and review of the literature.. BMJ Case Reports. 2015;2015:2015.
  • Durel CA, Feurer E, Pialat JB, et al. Etanercept may induce neurosarcoidosis in a patient treated for rheumatoid arthritis. BMC Neurol. 2013;13:212.
  • Unterstell N, Bressan AL, Serpa LA, et al. Systemic sarcoidosis induced by etanercept: first Brazilian case report. An Bras Dermatol. 2013;88(6 Suppl 1):197–199.
  • Vigne C, Tebib J-G, Pacheco Y, et al. Sarcoidosis: an underestimated and potentially severe side effect of anti-TNF-alpha therapy. Joint Bone Spine. 2013;80(1):104–107.
  • Watrin A, Royer M, Legrand E, et al. Hypercalcémie majeure révélatrice d’une sarcoïdose induite par étanercept. Revue des Maladies Respiratoires. 2014;31(3):255–258.
  • Yokoe I, Haraoka H, Yonamine T, et al. [Case Report; Long-term treatment with etanercept induced systemic sarcoidosis in a patient with rheumatoid arthritis]. Nihon Naika Gakkai Zasshi. 2015;104(4):769–774.
  • Daien CI, Monnier A, Claudepierre P, et al. Sarcoid-like granulomatosis in patients treated with tumor necrosis factor blockers: 10 cases. Rheumatology (Oxford). 2009;48(8):883–886.
  • Tong D, Manolios N, Howe G, et al. New onset sarcoid-like granulomatosis developing during anti-TNF therapy: an under-recognised complication. Internal Medicine Journal. 2012;42(1):89–94.
  • Perez-De-Lis M, Retamozo S, Flores-Chavez A, et al. Autoimmune diseases induced by biological agents. A review of 12,731 cases (BIOGEAS Registry). Expert Opinion on Drug Safety. 2017;16(11):1255–1271.
  • Ramos-Casals M, Brito-Zerón P, Soto M-J, et al. Autoimmune diseases induced by TNF-targeted therapies. Best Practice & Research Clinical Rheumatology. 2008;22(5):847–861.
  • Ramos-Casals M, Perez-Alvarez R, Perez-de-Lis M, et al. Pulmonary disorders induced by monoclonal antibodies in patients with rheumatologic autoimmune diseases. The American Journal of Medicine. 2011;124(5):386–394.
  • Toussirot E, Bernard C, Bossert M. Safety of the use of anti-IL17A treatment in a patient with certolizumab-induced sarcoidosis.. Clinical and Experimental Rheumatology. 2019;37(2):344–345.
  • Koda K, Toyoshima M, Nozue T, et al. Systemic sarcoidosis associated with certolizumab pegol treatment for rheumatoid arthritis: a case report and review of the literature. Internal Medicine. 2020;59(16):2015–2021.
  • Syed H, Ascoli C, Linssen CF, et al. Infection prevention in sarcoidosis:proposal for vaccination and prophylactic therapy. Sarcoidosis Vasculitis Diffuse Lung Dis. 2020;37(2):87–98.
  • Vorselaars ADM, Hijdra D, van Moorsel CHM, et al. Antinuclear antibodies do not predict anti-infliximab antibody induction in sarcoidosis. Journal of the American Academy of Dermatology. 2013;69(2):312–314.
  • Veltkamp M, Drent M, Baughman RP. Infliximab or biosimilars in sarcoidosis; to switch or not to switch? Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2016;32(4):280–283.
  • Al Sulais E, AlAmeel T. Biosimilars to antitumor necrosis factor agents in inflammatory bowel disease.. Biologics : Targets & Therapy. 2020;14:1–11.
  • Yoo DH, Hrycaj P, Miranda P, et al. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active rheumatoid arthritis: the PLANETRA study. Ann Rheum Dis. 2013;72(10):1613–1620.
  • Yoo DH, Prodanovic N, Jaworski J, et al. Efficacy and safety of CT-P13 (biosimilar infliximab) in patients with rheumatoid arthritis: comparison between switching from reference infliximab to CT-P13 and continuing CT-P13 in the PLANETRA extension study. Ann Rheum Dis. 2017;76(2):355–363.
  • Jorgensen KK, Olsen IC, Goll GL, et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. Lancet. 2017;389(10086):2304–2316.
  • Riller Q, Cotteret C, Junot H, et al. Infliximab biosimilar for treating neurosarcoidosis: tolerance and efficacy in a retrospective study including switch from the originator and initiation of treatment. Journal of Neurology. 2019;266(5):1073–1078.
  • Schimmelpennink MC, Vorselaars ADM, van Beek FT, et al. Efficacy and safety of infliximab biosimilar. Inflectra® in Severe Sarcoidosis. Respiratory Medicine. 2018 ;138:S7–S13.
  • Xue L, van Bilsen K, Schreurs MWJ, et al. Are patients at risk for recurrent disease activity after switching from remicade to remsima? An observational study. Frontiers in Medicine. 2020;7:418.
  • Korsten P, Strohmayer K, Baughman RP, et al. Refractory pulmonary sarcoidosis - proposal of a definition and recommendations for the diagnostic and therapeutic approach. . Clinical Pulmonary Medicine. 2016;23(2):67–75.
  • Baughman RP, Sweiss N, Keijsers R, et al. Repository corticotropin for chronic pulmonary sarcoidosis. Lung. 2017;195(3):313–322.
  • Chopra I, Qin Y, Kranyak J, et al. Repository corticotropin injection in patients with advanced symptomatic sarcoidosis: retrospective analysis of medical records. Therapeutic Advances in Respiratory Disease. 2019;13:1753466619888127.
  • Drake WP, Richmond BW, Oswald-Richter K, et al. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung diseases : Official Journal of WASOG. 2012;250(5):713–720.
  • Drake WP, Oswald-Richter K, Richmond BW, et al. Oral antimycobacterial therapy in chronic cutaneous sarcoidosis: a randomized, single-masked, placebo-controlled study. JAMA Dermatology. 2012;250(5):713–720.
  • Richmond BW, Richter K, King LE, et al. Resolution of chronic ocular sarcoidosis with antimycobacterial therapy. Case Rep Intern Med. 2014;1(2):5042.
  • Hunninghake GW, Crystal RG. Mechanisms of hypergammaglobulinemia in pulmonary sarcoidosis. Site of increased antibody production and role of T lymphocytes. Journal of Clinical Investigation. 2011;124(5):86–92.
  • Baughman RP, Hurtubise PE. Systemic immune response of patients with active pulmonary sarcoidosis.. Clinical and Experimental Immunology. 2018;138(3):S7–S13.
  • Daniele RP, McMillan LJ, Dauber JH, et al. Immune complexes in sarcoidosis: a correlation with activity and duration of disease. Chest. 1978;74(3):261–264.
  • Dall’Aglio PP, Pesci A, Bertorelli G, et al. Study of immune complexes in bronchoalveolar lavage fluids. Respiration. 1988;54(Suppl 1):36–41.
  • Lee N-S, Barber L, Akula SM, et al. Disturbed homeostasis and multiple signaling defects in the peripheral blood B-cell compartment of patients with severe chronic sarcoidosis. Clinical and Vaccine Immunology. 2016;23(2):67–75.
  • Saussine A, Tazi A, Feuillet S, et al. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One. 2013;30(3):e43588.
  • Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–445.
  • US National Library of Medicine. RITUXAN – rituximab 2020 [updated March 24, 2020; [cited 2020 September 10]. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=b172773b-3905-4a1c-ad95-bab4b6126563
  • Puechal X, Gottenberg JE, Berthelot JM, et al. Rituximab therapy for systemic vasculitis associated with rheumatoid arthritis: results from the autoimmunity and rituximab registry. Arthritis Care & Research. 2012;64(3):331–339.
  • Galimberti F, Fernandez AP. Sarcoidosis following successful treatment of pemphigus vulgaris with rituximab: a rituximab-induced reaction further supporting B-cell contribution to sarcoidosis pathogenesis? Clinical and Experimental Dermatology. 2016;41(4):413–416.
  • Beccastrini E, Vannozzi L, Bacherini D, et al. Successful treatment of ocular sarcoidosis with rituximab.. Ocular Immunology and Inflammation. 2013;21(3):244–246.
  • Belkhou A, Younsi R, El Bouchti I, et al. Rituximab as a treatment alternative in sarcoidosis. Joint Bone Spine. 2008;75(4):511–512.
  • Dasilva V, Breuil V, Chevallier P, et al. Relapse of severe sarcoidosis with an uncommon peritoneal location after TNFα blockade. Efficacy of rituximab, report of a single case. Joint Bone Spine. 2010;77(1):82–83.
  • Bomprezzi R, Pati S, Chansakul C, et al. A case of neurosarcoidosis successfully treated with rituximab. Neurology. 2010;75(6):568–570.
  • Earle B, Wolf DS, Ramsay ES. Novel use of rituximab in treatment of refractory neurosarcoidosis in an 11-Year-Old Girl. J Clin Rheumatol. 2018;25(6):e101-e103.
  • Sawaya R, Radwan W. Sarcoidosis associated with neuromyelitis optica. Journal of Clinical Neuroscience. 2013;20(8):1156–1158.
  • van Vollenhoven RF, Fleischmann RM, Furst DE, et al. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 Years. J Rheumatol. 2015;42(10):1761–1766.
  • Pescitelli L, Emmi G, Tripo L, et al. Cutaneous sarcoidosis during rituximab treatment for microscopic polyangiitis: an uncommon adverse effect? Eur J Dermatol. 2017;27(6):667–668.
  • Vesely NC, Thomas RM, Longo MI. Scar sarcoidosis following rituximab therapy. Dermatol Ther. 2020 ;33(6):e13693.
  • Miller MA, Bass HE. Effect of Acthar-c (ACTH) in sarcoidosis. Ann Inter Med. 1952;37(4):776–784.
  • Salomon A, Appel B, Collins SF, et al. Sarcoidosis: pulmonary and skin studies before and after ACTH and cortisone therapy. Diseases of the Chest. 1956;29(3):277–291.
  • Baughman RP, Barney JB, O’Hare L, et al. A retrospective pilot study examining the use of Acthar gel in sarcoidosis patients. Respiratory Medicine. 2016;110:66–72.
  • Zhou Y, Lower EE, Li H, et al. Sarcoidosis patient with lupus pernio and infliximab-induced myositis: response to Acthar gel.. Respiratory Medicine Case Reports. 2016;17:5–7.
  • Montero-Melendez T. ACTH: the forgotten therapy. Seminars in Immunology. 2015;27(3):216–226.
  • Ross AP, Ben-Zacharia A, Harris C, et al. Multiple sclerosis, relapses, and the mechanism of action of adrenocorticotropic hormone. Frontiers in Neurology. 2013;4:21.
  • Taylor A, Namba K. In vitro induction of CD25 + CD4 + regulatory T cells by the neuropeptide alpha-melanocyte stimulating hormone (α-MSH). Immunol Cell Biol. 2001;79(4):358–367.
  • Namba K, Kitaichi N, Nishida T, et al. Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2.. J Leukoc Biol. 2002;72(5):946–952.
  • Rahaghi FF, Sweiss NJ, Saketkoo LA, et al. Management of repository corticotrophin injection therapy for pulmonary sarcoidosis: a Delphi study. Eur Respir Rev. 2020;29(155):190147.
  • Zhou T, Casanova N, Pouladi N, et al. Identification of Jak-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature. Sci Rep. 2017;7(1):4237.
  • Rosenbach M. Janus kinase inhibitors offer promise for a new era of targeted treatment for granulomatous disorders. . Journal of the American Academy of Dermatology. 2020;82(3):e91–e92.
  • Wang A, Singh K, Ibrahim W, et al. The promise of jak inhibitors for treatment of sarcoidosis and other inflammatory disorders with macrophage activation: a review of the Literature. Yale J Biol Med. 2020;93(1):187–195.
  • Rosenbaum JT, Pasadhika S, Crouser ED, et al. Hypothesis: sarcoidosis is a STAT1-mediated disease. Clin Immunol. 2009;132(2):174–183.
  • O’Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66(1):311–328.
  • O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–170.
  • Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1–2):1–24.
  • Rosenbaum JT, Hessellund A, Phan I, et al. The expression of STAT-1 and phosphorylated STAT-1 in conjunctival granulomas. Ocul Immunol Inflamm. 2010;18(4):261–264.
  • Damsky W, Thakral D, Emeagwali N, et al. Tofacitinib treatment and molecular analysis of cutaneous sarcoidosis. N Engl J Med. 2018;379(26):2540–2546. .
  • Damsky W, Thakral D, McGeary MK, et al. Janus kinase inhibition induces disease remission in cutaneous sarcoidosis and granuloma annulare. J Am Acad Dermatol. 2020;82(3):612-621.
  • Gadina M, Johnson C, Schwartz D, et al. Translational and clinical advances in JAK-STAT biology: the present and future of jakinibs. Journal of Leukocyte Biology. 2018;104(3):499–514.
  • Westhovens R. Clinical efficacy of new JAK inhibitors under development. Just more of the same? Rheumatology (Oxford). 2019;58(Suppl Supplement_1):i27–i33.
  • Verstovsek S, Passamonti F, Rambaldi A, et al. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 Inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer. 2014;120(4):513–520.
  • Rotenberg C, Besnard V, Brillet PY, et al. Dramatic response of refractory sarcoidosis under ruxolitinib in a patient with associated JAK2-mutated polycythemia. Eur Respir J. 2018;52(6):1801482.
  • Wei JJ, Kallenbach LR, Kreider M, et al. Resolution of cutaneous sarcoidosis after Janus kinase inhibitor therapy for concomitant polycythemia vera. JAAD Case Reports. 2019;5(4):360–361.
  • Levraut M, Martis N, Viau P, et al. Refractory sarcoidosis-like systemic granulomatosis responding to ruxolitinib. Ann Rheum Dis. 2019 ;78(11):1606–1607.
  • Damsky W, Young BD, Sloan B, et al. Treatment of multiorgan sarcoidosis with tofacitinib. ACR Open Rheumatology. 2020;2(2):106–109.
  • Sejournet L, Kodjikian L, Grange L, et al. Resolution of ocular and mediastinal sarcoidosis after Janus kinase inhibitor therapy for concomitant rheumatoid arthritis.. Clinical and Experimental Rheumatology. 2020 June 30.
  • Damsky W, Thakral D, McGeary MK, et al. Janus kinase inhibition induces disease remission in cutaneous sarcoidosis and granuloma annulare. J Am Acad Dermatol. 2020;82(3):612–621.
  • ClinicalTrials.gov. Tofacitinib hypothesis-generating, pilot study for corticosteroid-dependent sarcoidosis 2019 [cited 2020 Sept 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT03793439
  • ClinicalTrials.gov. Open-label trial of tofacitinib in cutaneous sarcoidosis and granuloma annulare 2019 [cited 2020 Sept 21]. Available from: https://clinicaltrials.gov/ct2/show/NCT03910543
  • Bechman K, Subesinghe S, Norton S, et al. A systematic review and meta-analysis of infection risk with small molecule JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019;58(10):1755–1766.
  • Strand V, Ahadieh S, French J, et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Research & Therapy. 2018;11(17):362.
  • Winthrop KL, Wouters AG, Choy EH, et al. The Safety and Immunogenicity of live zoster vaccination in patients with rheumatoid arthritis before starting tofacitinib: a randomized phase ii trial. Arthritis & Rheumatology. 2017;69(10):1969–1977.
  • Sahashi K, Ina Y, Takada K, et al. Significance of interleukin 6 in patients with sarcoidosis. Chest. 1994;106(1):156–160 .
  • Takizawa H, Satoh M, Okazaki H, et al. Increased IL-6 and IL-8 in bronchoalveolar lavage fluids (BALF) from patients with sarcoidosis: correlation with the clinical parameters. Clin Exp Immunol. 1997;107(1):175–181.
  • Denisova O, Egorova K, Chernogoryuk G. TNF-α, IL-8, IL-6 levels in serum of sarcoidosis patients with different clinical course. Eur Respir J. 2013;42:3787.
  • Chazal T, Costopoulos M, Maillart E, et al. The cerebrospinal fluid CD4/CD8 ratio and interleukin-6 and -10 levels in neurosarcoidosis: a multicenter. comparative study. Eur J Neurol: pragmatic; 2019.
  • Chen ES, Moller DR. Sarcoidosis—scientific progress and clinical challenges. Nature Reviews Rheumatology. 2011;7(8):457–467.
  • Dienz O, Rincon M. The effects of IL-6 on CD4 T cell responses. Clin Immunol. 2009;130(1):27–33.
  • Terabe F, Fujimoto M, Serada S, et al. Comparative analysis of the effects of anti-IL-6 receptor mAb and anti-TNF mAb treatment on CD4+ T-cell responses in murine colitis. Inflamm Bowel Dis. 2018;104(3):491–502.
  • Song S-NJ, Yoshizaki K. Tocilizumab for treating rheumatoid arthritis: an evaluation of pharmacokinetics/pharmacodynamics and clinical efficacy. Expert Opinion on Drug Metabolism & Toxicology. 2018;52(6):307–316.
  • Raimondo MG, Biggioggero M, Crotti C, et al. Refractory sarcoidosis-like systemic granulomatosis responding to ruxolitinib. Annals of the Rheumatic Diseases. 2019;78:1593–1603.
  • Bae S-C, Lee YH. Vergleichbare Wirksamkeit und Verträglichkeit von Sarilumab 150 und 200 mg bei Patienten mit aktiver rheumatoider Arthritis. Zeitschrift für Rheumatologie. 2018;77(5):421–428.
  • Kim GW, Lee NR, Pi RH, et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res. 2015;38(5):575–584.
  • Sarosiek S, Shah R, Munshi NC. Review of siltuximab in the treatment of multicentric Castleman’s disease. Therapeutic Advances in Hematology. 2016;7(6):360–366.
  • Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 receptor in rheumatoid arthritis: what’s the difference? BioDrugs. 2018;32(6):531–546.
  • Bae S-C, Lee YH. Comparison of the efficacy and tolerability of tocilizumab, sarilumab, and sirukumab in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials.Clinical Rheumatology. 2018;37(6):1471–1479.
  • Silpa-Archa S, Oray M, Preble JM, et al. Outcome of tocilizumab treatment in refractory ocular inflammatory diseases. Acta Ophthalmologica. 2016;94(6):e400–6.
  • Del Giorno R, Iodice A, Mangas C, et al. New-onset cutaneous sarcoidosis under tocilizumab treatment for giant cell arteritis: a quasi-paradoxical adverse drug reaction. Case report and literature review. Therapeutic Advances in Musculoskeletal Disease. 2019;11:1759720X19841796.
  • Nutz A, Pernet C, Combe B, et al. Sarcoidosis induced by tocilizumab: a paradoxical event? The Journal of Rheumatology. 2013;40(10):1773–1774.
  • Bustamente L, Buscot M, Marquette C-H, et al. Sarcoidosis and tocilizumab: is there a link? Clinical and Experimental Rheumatology. 2017;35(4):716.
  • Shono Y, Kamata M, Takeoka S, et al. Cutaneous sarcoidosis in a patient with rheumatoid arthritis receiving tocilizumab. The Journal of Dermatology. 2018;45(8):e217–e218.
  • Theodosiou G, Luu H, Svensson Å. Tocilizumab-induced sarcoidosis-like reaction in a patient with giant cell arteritis. Clinical implications of a paradoxical phenomenon. International Journal of Dermatology. 2020;59(7):888–889.
  • Baughman RP, Judson MA, Teirstein AS, et al. Thalidomide for chronic sarcoidosis. Chest. 2002;122(1):227–232.
  • Judson MA, Silvestri J, Hartung C, et al. The effect of thalidomide on corticosteroid-dependent pulmonary sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2006;23(1):51–57.
  • Fazzi P, Manni E, Cristofani R, et al. Thalidomide for improving cutaneous and pulmonary sarcoidosis in patients resistant or with contraindications to corticosteroids. Biomedicine & Pharmacotherapy. 2012;66(4):300–307.
  • Droitcourt C, Rybojad M, Porcher R, et al. A randomized, investigator-masked, double-blind, placebo-controlled trial on thalidomide in severe cutaneous sarcoidosis. Chest. 2014;146(4):1046–1054.
  • Nguyen YT, Dupuy A, Cordoliani F, et al. Treatment of cutaneous sarcoidosis with thalidomide. Journal of the American Academy of Dermatology. 2004;50(2):235–241.
  • Baughman RP, Judson MA, Ingledue R, et al. Efficacy and safety of apremilast in chronic cutaneous sarcoidosis. Archives of Dermatology. 2012;148(2):262–264.
  • Zabel P, Entzian P, Dalhoff K, et al. Pentoxifylline in treatment of sarcoidosis.. American Journal of Respiratory and Critical Care Medicine. 1997;155(5):1665–1669.
  • Park MK, Fontana F, Babaali H, et al. Steroid-sparing effects of pentoxifylline in pulmonary sarcoidosis.. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases : Official Journal of WASOG. 2009;26(2):121–131.
  • Schweitzer M, Mirsaeidi M, Campos M, et al. Roflumilast Reduces Circulatory IL-17 Levels in Sarcoidosis Subjects with Pulmonary Fibrosis. Am J Respir Crit Care Med. 2017;195:A4754.
  • Baughman P, Birring S, Judson MA, et al. A double Blind, Placebo Controlled Study of Roflumilast to Prevent Acute Events in Fibrotic Sarcoidosis. Am J Respiratory Crit Care Med. 2017;195:A4752.
  • Wu JJ, Huang DB, Pang KR, et al. Thalidomide: dermatological indications, mechanisms of action and side-effects. British Journal of Dermatology. 2005;153(2):254–273.
  • Sheskin J. Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther. 1965;6(3):303–306.
  • Sheskin J. The treatment of lepra reaction in lepromatous leprosy. Fifteen years’ experience with thalidomide. International Journal of Dermatology. 1980;19(6):318–322.
  • Tavares JL, Wangoo A, Dilworth P, et al. Thalidomide reduces tumour necrosis factor-α production by human alveolar macrophages. Respiratory Medicine. 1997;91(1):31–39.
  • Barriere H. Cutaneous sarcoidosis. Treatment with thalidomide. Presse Med. 1983;12(15):963.
  • Carlesimo M, Giustini S, Rossi A, et al. Treatment of cutaneous and pulmonary sarcoidosis with thalidomide. J Am Acad Dermatol. 1995;32(5):866–869.
  • Lee JB, Koblenzer PS. Disfiguring cutaneous manifestation of sarcoidosis treated with thalidomide: a case report. J Am Acad Dermatol. 1998;39(5):835–838.
  • Rousseau L, Beylot-Barry M, Doutre MS, et al. Cutaneous sarcoidosis successfully treated with low doses of thalidomide. Archives of Dermatology. 1998;134(8):1045–1046.
  • Hoyle JC, Newton HB, Katz S. Prognosis of refractory neurosarcoidosis altered by thalidomide: a case report. J Med Case Rep. 2008;2(1):27.
  • Hammond ER, Kaplin AI, Kerr DA. Thalidomide for acute treatment of neurosarcoidosis. Spinal Cord. 2007;45(12):802–803.
  • Schafer PH, Parton A, Capone L, et al. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell Signal. 2014;26(9):2016–2029.
  • Poole RM, Ballantyne AD. Apremilast: first global approval. Drugs. 2014;74(7):825–837.
  • Katakami Y, Nakao Y, Koizumi T, et al. Regulation of tumour necrosis factor production by mouse peritoneal macrophages: the role of cellular cyclic AMP.. Immunology. 2020;64(4):719–724.
  • Kunkel SL, Spengler M, May MA, et al. Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J Biol Chem. 1988;263(11):5380–5384.
  • Schafer PH, Parton A, Gandhi AK, et al. Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis. Br J Pharmacol. 2010;159(4):842–855.
  • Schett G, Sloan VS, Stevens RM, et al. Apremilast: a novel PDE4 inhibitor in the treatment of autoimmune and inflammatory diseases. Therapeutic Advances in Musculoskeletal Disease. 2010;2(5):271–278.
  • Samlaska CP, Winfield EA. Pentoxifylline. Journal of the American Academy of Dermatology. 1994;30(4):603–621.
  • van Furth AM, Verhard‐seijmonsbergen EM, van Furth R, et al. Effect of lisofylline and pentoxifylline on the bacterial-stimulated production of TNF-α, IL-1β and IL-10 by human leucocytes. Immunology. 1997;91(2):193–196.
  • Strieter RM, Remick DG, Ward PA, et al. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxofylline. Biochem Biophys Res Commun. 1988;155(3):1230–1236.
  • Tong Z-H, Dai H-P, Chen B-M, et al. [Inhibition of cytokine release from alveolar macrophages in pulmonary sarcoidosis by pentoxifylline].. Zhonghua Jie He He Hu Xi Za Zhi = Zhonghua Jiehe He Huxi Zazhi = Chinese Journal of Tuberculosis and Respiratory Diseases. 2003;26(7):415–418.
  • Marques LJ, Zheng L, Poulakis N, et al. Pentoxifylline inhibits tnf- α production from human alveolar macrophages. American Journal of Respiratory and Critical Care Medicine. 1999;159(2):508–511.
  • Korber M, Kamp S, Kothe H, et al. [Pentoxifylline inhibits secretion of O2- and TNF-alpha by alveolar macrophages in patients with sarcoidosis]. Immunitat und Infektion. 1995;23(3):107–110.
  • Semmler J, Gebert U, Eisenhut T, et al. Xanthine derivatives: comparison between suppression of tumour necrosis factor-alpha production and inhibition of cAMP phosphodiesterase activity. Immunology. 1993;78(4):520–525.
  • U.S. National Library of Medicine . daliresp- roflumilast tablet 2020 [updated March 12, 2020; cited 2020 september 7]. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=c9a1d0a8-581f-4f91-a2b8-f419192d0ebf
  • Gonzalez-Rey E, Delgado M. Role of vasoactive intestinal peptide in inflammation and autoimmunity. Current Opinion in Investigational Drugs (London, England : 2000). 2011;17(2):491–502.
  • Delgado M, Abad C, Martinez C, et al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. Journal of Molecular Medicine. 2017;Volume11(1):16–24.
  • Delgado M, Chorny A, Gonzalez-Rey E, et al. Vasoactive intestinal peptide generates CD4+CD25+ regulatory T cells in vivo. J Leukoc Biol. 2005;78(6):1327–1338.
  • Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al. Vasoactive intestinal peptide induces CD4+,CD25+ T regulatory cells with therapeutic effect in collagen-induced arthritis. Arthritis Rheum. 2018;32(6):531–546.
  • Croxford AL, Kulig P, Becher B. IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev. 2014;25(4):415–421.
  • Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–748.
  • Presky DH, Yang H, Minetti LJ, et al. A functional interleukin 12 receptor complex is composed of two -type cytokine receptor subunits. Proc Natl Acad Sci U S A. 2020;59(7):888–889.
  • Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–725.
  • Macatonia SE, Hosken NA, Litton M, et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol. 2004;50(2):235–241.
  • Khader SA, Thirunavukkarasu S. The Tale of IL-12 and IL-23: a Paradigm Shift. J Immunol. 2019;202(3):629–630.
  • Shigehara K, Shijubo N, Ohmichi M, et al. Increased circulating interleukin-12 (IL-12) p40 in pulmonary sarcoidosis. Clin Exp Immunol. 2005;153(2):254–257.
  • Hata M, Sugisaki K, Miyazaki E, et al. Circulating IL-12 p40 is increased in the patients with sarcoidosis, correlation with clinical markers. Intern Med. 2007;46(17):1387–1394.
  • Ten Berge B, Paats MS, Bergen IM, et al. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford). 2012;51(1):37–46.
  • Richmond BW, Ploetze K, Isom J, et al. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J Clin Immunol. 2013;33(2):446–455.
  • US National Library of Medicine. Stelara (ustekinumab) injection, solution (ssen Biotech, Inc.) 2020 [updated August 4, 2020; cited 2020 September 7]. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=c77a9664-e3bb-4023-b400-127aa53bca2b#S14.5
  • Monast CS, Li K, Judson MA, et al. Sarcoidosis extent relates to molecular variability. Clin Exp Immunol. 2017;188(3):444–454.
  • Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. . Nature Medicine. 2015;21(7):677–687.
  • Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annual Review of Cell and Developmental Biology. 2012;28(1):137–161.
  • Xue Y, Enosi Tuipulotu D, Tan WH, et al. Emerging activators and regulators of inflammasomes and pyroptosis. Trends in Immunology. 2019;40(11):1035–1052.
  • Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–1022.
  • Lu F, Lan Z, Xin Z, et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. Journal of Cellular Physiology. 2020;235(4):3207–3221.
  • Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020;126(9):1260–1280.
  • Buckley LF, Abbate A. Interleukin-1 blockade in cardiovascular diseases: a clinical update. Eur Heart J. 2018;39(22):2063–2069.
  • Huppertz C, Jäger B, Wieczorek G, et al. The NLRP3 inflammasome pathway is activated in sarcoidosis and involved in granuloma formation. European Respiratory Journal. 2020;55(3):1900119.
  • Fireman E, Aderka D, Efraim SB, et al. Suppressive effect of TNF-α and IL-1 on alveolar fibroblast proliferation in sarcoidosis. Mediators Inflamm. 1992;1(5):319–322.
  • Terao I, Hashimoto S, Horie T. Effect of GM-CSF on TNF-alpha and IL-1-beta production by alveolar macrophages and peripheral blood monocytes from patients with sarcoidosis. Int Arch Allergy Immunol. 1993;102(3):242–248.
  • Kasahara K, Kobayashi K, Shikama Y, et al. Direct evidence for granuloma-inducing activity of interleukin-1. Induction of experimental pulmonary granuloma formation in mice by interleukin-1-coupled beads.. The American Journal of Pathology. 1988;130(3):629–638.
  • Kron J, Mauro AG, Bonaventura A, et al. Inflammasome formation in granulomas in cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2019;12(9):e007582.
  • Abbate A, Trankle CR, Buckley LF, et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with st-segment–elevation myocardial infarction. J Am Heart Assoc. 2020;9(5):e014941.
  • Wohlford GF, Buckley LF, Vecchie A, et al. Acute effects of interleukin-1 blockade using anakinra in patients with acute pericarditis. J Cardiovasc Pharmacol. 2020;76(1):50–52.
  • Buckley LF, Viscusi MM, Van Tassell BW, et al. Interleukin-1 blockade for the treatment of pericarditis. Eur Heart J Cardiovasc Pharmacother. 2018;4(1):46–53.
  • Van Tassell BW, Abouzaki NA, Oddi Erdle C, et al. Interleukin-1 Blockade in Acute Decompensated Heart Failure. J Cardiovasc Pharmacol. 2003;26(7):415–418.
  • Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119–1131.
  • Furst DE, Keystone EC, Fleischmann R, et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2009. Ann Rheum Dis. 2010;69(Suppl 1):i2–29.
  • Feist E, Burmester GR. Canakinumab for treatment of cryopyrin-associated periodic syndrome. Expert Opin Biol Ther. 2010;10(11):1631–1636.
  • So A, De Meulemeester M, Pikhlak A, et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 2010;62(10):3064–3076.
  • US National Library of Medicine. Study of Efficacy, Safety and Tolerability of ACZ885 (Canakinumab) in Patients With Pulmonary Sarcoidosis 2016 [updated March 16, 2020; cited 2020 September 21]. Available from: https://clinicaltrials.gov/ct2/show/record/NCT02888080
  • US National Library of Medicine. Interleukin-1 Blockade for Treatment of Cardiac Sarcoidosis (MAGiC-ART): US National Library of Medicine; 2019 [updated September 1 2020; cited 2020 September 22]. Available from: https://clinicaltrials.gov/ct2/show/NCT04017936?term=anakinra&cond=Sarcoidosis&cntry=US&draw=2&rank=1
  • Sacre K, Pasqualoni E, Descamps V, et al. Sarcoid-like granulomatosis in a patient treated by interleukin-1 receptor antagonist for TNF-receptor-associated periodic syndrome. Rheumatology (Oxford). 2013;52(7):1338–1340.
  • Friedman BE, English JC. Drug-induced sarcoidosis in a patient treated with an interleukin-1 receptor antagonist for hidradenitis suppurativa. JAAD Case Rep. 2018;4(6):543–545.
  • Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in Health and Disease. Int J Mol Sci. 2019;20(3):649.
  • Greene CM, Meachery G, Taggart CC, et al. Role of IL-18 in CD4+ T lymphocyte activation in sarcoidosis. J Immunol. 2000;165(8):4718–4724.
  • Kieszko R, Krawczyk P, kowska O, et al. The clinical significance of interleukin 18 assessment in sarcoidosis patients. Respir Med. 2007;101(4):722–728.
  • Antoniou KM, Tzouvelekis A, Alexandrakis MG, et al. Upregulation of Th1 cytokine profile (IL-12, IL-18) in bronchoalveolar lavage fluid in patients with pulmonary sarcoidosis. J Interferon Cytokine Res. 2006;26(6):400–405.
  • Mroz RM, Korniluk M, Stasiak-Barmuta A, et al. Increased levels of interleukin-12 and interleukin-18 in bronchoalveolar lavage fluid of patients with pulmonary sarcoidosis. J Physiol Pharmacol. 2008;59(Suppl 6):507–513.
  • Shigehara K, Shijubo N, Ohmichi M, et al. Increased levels of interleukin-18 in patients with pulmonary sarcoidosis. Am J Respir Crit Care Med. 2000;162(5):1979–1982.
  • Ruderman EM, Pope RM. The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res Ther. 2005;7(Suppl 2):S21–5.
  • Chambers CA, Kuhns MS, Egen JG, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–594.
  • Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–603.
  • Broos CE, van Nimwegen M, In ‘T Veen JC, et al. reased Cytotoxic T-Lymphocyte Antigen 4 Expression on Regulatory T Cells and Th17 Cells in Sarcoidosis: double Trouble? Am J Respir Crit Care Med. 2015;192(6):763–765.
  • Hattori N, Niimi T, Sato S, et al. Cytotoxic T-lymphocyte antigen 4 gene polymorphisms in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22(1):27–32.
  • Bertrand A, Kostine M, Barnetche T, et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015;13:211.
  • Reddy SB, Possick JD, Kluger HM, et al. Sarcoidosis Following Anti-PD-1 and Anti-CTLA-4 Therapy for Metastatic Melanoma. J Immunother. 2017;40(8):307–311.
  • Kuehn HS, Ouyang W, Lo B, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–1627.
  • Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–1416.
  • Zeissig S, Petersen BS, Tomczak M, et al. Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4. Gut. 2015;64(12):1889–1897.
  • Linsley PS, Brady W, Urnes M, et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174(3):561–569.
  • Brown S, Everett CC, Naraghi K, et al. Alternative tumour necrosis factor inhibitors (TNFi) or abatacept or rituximab following failure of initial TNFi in rheumatoid arthritis: the SWITCH RCT. Health Technol Assess. 2018;22(34):1–280.
  • Buch MH, Vital EM, Emery P. Abatacept in the treatment of rheumatoid arthritis. Arthritis Res Ther. 2008;10(Suppl 1):S5.
  • Frye BC, Rump IC, Uhlmann A, et al. Safety and efficacy of abatacept in patients with treatment-resistant SARCoidosis (ABASARC) - protocol for a multi-center, single-arm phase IIa trial. Contemp Clin Trials Commun. 2020;19:100575.
  • Zarogoulidis P, Lampaki S, Turner JF, et al. mTOR pathway: a current, up-to-date mini-review (Review). Oncol Lett. 2014;8(6):2367–2370.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–293.
  • Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12(1):71.
  • Pacheco Y, Lim CX, Weichhart T, et al. Sarcoidosis and the mTOR, Rac1, and Autophagy Triad. Trends Immunol. 2020;41(4):286–299.
  • Linke M, Pham HT, Katholnig K, et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol. 2017;18(3):293–302.
  • Calender A, Lim CX, Weichhart T, et al. Exome sequencing and pathogenicity-network analysis of 5 French families implicate mTOR signalling and autophagy in familial sarcoidosis. Eur Respir J. 2019;54(2):190043.
  • Crouser ED, Locke LW, Julian MW, et al. Phagosome-regulated mTOR Signalling during Sarcoidosis Granuloma Biogenesis. Eur Respir J. 2020;Sep17:2002695.
  • Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–379.
  • Benjamin D, Colombi M, Moroni C, et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868–880.
  • Gupta N, Bleesing JH, McCormack FX. Successful Response to Treatment with Sirolimus in Pulmonary Sarcoidosis. Am J Respir Crit Care Med. 2020;202(9):e119-120.
  • Manzia TM, Bellini MI, Corona L, et al. Successful treatment of systemic de novo sarcoidosis with cyclosporine discontinuation and provision of rapamune after liver transplantation. Transpl Int. 2011;24(8):e69–70.
  • Cabahug VLO, Uy HS, Yu-Keh E, et al. Outcomes of treatment with sirolimus for non-infectious uveitis: a meta-analysis and systematic review. Clin Ophthalmol. 2019;13:649–669.
  • Nguyen QD, Ibrahim MA, Watters A, et al. Ocular tolerability and efficacy of intravitreal and subconjunctival injections of sirolimus in patients with non-infectious uveitis: primary 6-month results of the SAVE Study. J Ophthalmic Inflamm Infect. 2013;3(1):32.
  • Ibrahim MA, Sepah YJ, Watters A, et al. One-Year Outcomes of the SAVE Study: sirolimus as a Therapeutic Approach for UVEitis. Transl Vis Sci Technol. 2015;4(2):4.
  • Merrill PT, Clark WL, Banker AS, et al. Efficacy and Safety of Intravitreal Sirolimus for Noninfectious Uveitis of the Posterior Segment: results from the Sirolimus Study Assessing Double-Masked Uveitis Treatment (SAKURA) Program. Ophthalmology. 2020;127(10):1405–1415.
  • Nguyen QD, Merrill PT, Clark WL, et al. Intravitreal sirolimus for noninfectious uveitis: a phase iii sirolimus study assessing double-masked uveitis treatment (SAKURA). Ophthalmology. 2016;123(11):2413–2423.
  • Kirk SG, Samavati L, Liu Y. MAP kinase phosphatase-1, a gatekeeper of the acute innate immune response. Life Sci. 2020;241:117157.
  • Rastogi R, Du W, Ju D, et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. Am J Respir Crit Care Med. 2011;183(4):500–510.
  • Kyttaris VC. Kinase inhibitors: a new class of antirheumatic drugs. Drug Des Devel Ther. 2012;6:245–250.
  • Alten RE, Zerbini C, Jeka S, et al. Efficacy and safety of pamapimod in patients with active rheumatoid arthritis receiving stable methotrexate therapy. Ann Rheum Dis. 2010;69(2):364–367.
  • Cohen SB, Cheng TT, Chindalore V, et al. Evaluation of the efficacy and safety of pamapimod, a p38 MAP kinase inhibitor, in a double-blind, methotrexate-controlled study of patients with active rheumatoid arthritis. Arthritis Rheum. 2009;60(2):335–344.
  • Damov N, Kauffman RS, Spencer-Green GT. Efficacy, pharmacodynamics, and safety of VX-702, a novel p38 MAPK inhibitor, in rheumatoid arthritis: results of two randomized, double-blind, placebo-controlled clinical studies. Arthritis Rheum. 2009 ;60(5):1232–1241.
  • Genovese MC, Cohen SB, Wofsy D, et al. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. J Rheumatol. 2011 ;38(5):846–854.
  • Dotan I, Rachmilewitz D, Schreiber S, et al. A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn’s disease. Gut. 2010;59(6):760–766.
  • Valeyre D, Soler P, Clerici C, et al. Smoking and pulmonary sarcoidosis: effect of cigarette smoking on prevalence, clinical manifestations, alveolitis, and evolution of the disease. Thorax. 1988;43(7):516–524.
  • Harf RA, Ethevenaux C, Gleize J, et al. Reduced prevalence of smokers in sarcoidosis. Results of a case-control study. Ann N Y Acad Sci. 1986;465:625–631.
  • Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, et al. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14(9–10):567–574.
  • Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–388.
  • Nizri E, Irony-Tur-Sinai M, Lory O, et al. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. J Immunol. 2009;183(10):6681–6688.
  • Sopori ML, Kozak W, Savage SM, et al. Effect of nicotine on the immune system: possible regulation of immune responses by central and peripheral mechanisms. Psychoneuroendocrinology. 1998;23(2):189–204.
  • Marrero MB, Bencherif M. Convergence of alpha 7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation: central role for JAK2 activation of STAT3 and NF-kappaB. Brain Res. 2009;1256:1–7.
  • Wang DW, Zhou RB, Yao YM, et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro. J Pharmacol Exp Ther. 2010;335(3):553–561.
  • Geng Y, Savage SM, Johnson LJ, et al. Effects of nicotine on the immune response. I. Chronic exposure to nicotine impairs antigen receptor-mediated signal transduction in lymphocytes. Toxicol Appl Pharmacol. 1995;135(2):268–278.
  • Yoshikawa H, Kurokawa M, Ozaki N, et al. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol. 2006;146(1):116–123.
  • Zhou Y, Zuo X, Li Y, et al. Nicotine inhibits tumor necrosis factor-alpha induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatol Int. 2012;32(1):97–104.
  • Julian MW, Shao G, Schlesinger LS, et al. Nicotine treatment improves Toll-like receptor 2 and Toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest. 2013;143(2):461–470.
  • Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–49.
  • Chiossone L, Conte R, Spaggiari GM, et al. Mesenchymal stromal cells induce peculiar alternatively activated macrophages capable of dampening both innate and adaptive immune responses. Stem Cells. 2016;34(7):1909–1921.
  • Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med. 2013;13(5):856–867.
  • Vasandan AB, Jahnavi S, Shashank C, et al. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep. 2016;6:38308.
  • Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214–2219.
  • Gur-Wahnon D, Borovsky Z, Beyth S, et al. Contact-dependent induction of regulatory antigen-presenting cells by human mesenchymal stem cells is mediated via STAT3 signaling. Exp Hematol. 2007;35(3):426–433.
  • Bernardo ME, Fibbe WE. Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann N Y Acad Sci. 2012;1266:107–117.
  • Lalu MM, McIntyre L, Pugliese C, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7(10):e47559.
  • Reinders ME, Dreyer GJ, Bank JR, et al. Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study. J Transl Med. 2015;13:344.
  • Knyazev OV, Parfenov AI, Konoplyannikov AG, et al. [Safety of mesenchymal stromal cell therapy for inflammatory bowel diseases: results of a 5-year follow-up]. Ter Arkh. 2015;87(2):39–44.
  • Zhao R, Su Z, Wu J, et al. Serious adverse events of cell therapy for respiratory diseases: a systematic review and meta-analysis. Oncotarget. 2017;8(18):30511–30523.
  • Baughman RP, Culver DA, kovi V, et al. Placenta-derived mesenchymal-like cells (PDA-001) as therapy for chronic pulmonary sarcoidosis: a phase 1 study. Sarcoidosis Vasc Diffuse Lung Dis. 2015;32(2):106–114.
  • McClain Caldwell I, Hogden C, Nemeth K, et al. Bone Marrow-Derived Mesenchymal Stromal Cells (MSCs) Modulate the Inflammatory Character of Alveolar Macrophages from Sarcoidosis Patients. J Clin Med. 2020;9(1):278.
  • Ginoux E, Kottler D, Anglaret B, et al. Remission of a long-lasting sarcoidosis after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia. JAAD Case Rep. 2016;2(5):408–410.
  • Tauro S, Mahendra P. Resolution of sarcoidosis after allogeneic bone marrow transplantation with donor lymphocyte infusions. Bone Marrow Transplant. 2001;27(7):757–759.
  • Bhagat R, Rizzieri DA, Vredenburgh JJ, et al. Pulmonary sarcoidosis following stem cell transplantation: is it more than a chance occurrence? Chest. 2004;126(2):642–644.
  • Gooneratne L, Lim ZY, Vivier A, et al. Sarcoidosis as an unusual cause of hepatic dysfunction following reduced intensity conditioned allogeneic stem cell transplantation. Bone Marrow Transplant. 2007;39(8):511–512.
  • Kushima H, Ishii H, Ikewaki J, et al. Sarcoidosis in donor-derived tissues after haematopoietic stem cell transplantation. Eur Respir J. 2013;41(6):1452–1453.
  • Marchal A, Charlotte F, Maksud P, et al. [Sarcoidosis flare after autologous stem cell transplantation: an immune paradox?]. Rev Med Interne. 2017;38(9):619–622.
  • Teo M, McCarthy JE, Brady AP, et al. A case of sarcoidosis in a patient with testicular cancer post stem cell transplant. Acta Oncol. 2013;52(4):869–871.
  • Marks PW, Witten CM, Califf RM. Clarifying Stem-Cell Therapy’s Benefits and Risks. N Engl J Med. 2017;376(11):1007–1009.
  • FDA Warns About Stem Cell Therapies 2017 [ updated 09/03/2019 cited 2020 September 24]. https://www.fda.gov/consumers/consumer-updates/fda-warns-about-stem-cell-therapies

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.