768
Views
12
CrossRef citations to date
0
Altmetric
Review

Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 357-381 | Received 20 Dec 2020, Accepted 05 Feb 2021, Published online: 08 Mar 2021

References

  • Gandhi H, Sharma AK, Mahant S, et al. Recent advancements in brain tumor targeting using magnetic nanoparticles. Ther Deliv. 2020;11(2):97–112.
  • Jafari B, Pourseif MM, Barar J, et al. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv. 2019;16(6):583–605.
  • Sun C, Ding Y, Zhou L, et al. Noninvasive nanoparticle strategies for brain tumor targeting. Nanomed. 2017;13(8):2605–2621.
  • Wei X, Chen X, Ying M, et al. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B. 2014;4(3):193–201.
  • Cheng Y, Morshed RA, Auffinger B, et al. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev. 2014;66:42–57.
  • Hempel C, Johnsen KB, Kostrikov S, et al. Brain tumor vessels-a barrier for drug delivery. Cancer Metastasis Rev. 2020;39(3):959–968.
  • Mellinghoff IK, Gilbertson RJ. Brain Tumors: challenges and Opportunities to Cure. J Clin Oncol. 2017;35(21):2343–2345.
  • Schmitt C, Adamski V, Rasch F, et al. Establishment of a glioblastoma in vitro (in)complete resection dual co-culture model suitable for drug testing. Ann Anat. 2020;228:151440.
  • Bette S, Barz M, Wiestler B, et al. Prognostic Value of Tumor Volume in Glioblastoma Patients: size Also Matters for Patients with Incomplete Resection. Ann Surg Oncol. 2018;25(2):558–564.
  • Grabowski MM, Recinos PF, Nowacki AS, et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg. 2014;121(5):1115–1123.
  • Trifiletti DM, Alonso C, Grover S, et al. Prognostic Implications of Extent of Resection in Glioblastoma: analysis from a Large Database. World Neurosurg. 2017;103:330–340.
  • Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019;16(8):509–520.
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–185.
  • Persidsky Y, Ramirez SH, Haorah J, et al. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–236.
  • He Y, Yao Y, Tsirka SE, et al. Cell-culture models of the blood-brain barrier. Stroke. 2014;45(8):2514–2526.
  • Stock AD, Gelb S, Pasternak O, et al. The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev. 2017;16(6):612–619.
  • Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6(8):650–661.
  • Yao H, Wang K, Wang Y, et al. Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials. 2015;37:345–352.
  • Barar J, Rafi MA, Pourseif MM, et al. Blood-brain barrier transport machineries and targeted therapy of brain diseases. BioImpacts. 2016;6(4):225–248.
  • Willis CL. Imaging in vivo astrocyte/endothelial cell interactions at the blood-brain barrier. Methods Mol Biol. 2012;814:515–529.
  • Omidi Y, Barar J. Impacts of blood-brain barrier in drug delivery and targeting of brain tumors. Bioimpacts. 2012;2(1):5–22.
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
  • Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res. 2003;61:39–78.
  • Watanabe T, Dohgu S, Takata F, et al. Paracellular barrier and tight junction protein expression in the immortalized brain endothelial cell lines bEND.3, bEND.5 and mouse brain endothelial cell 4. Biol Pharm Bull. 2013;36(3):492–495.
  • Idris F, Hanna Muharram S, Zaini Z, et al. Establishment of murine in vitro blood-brain barrier models using immortalized cell lines: co-cultures of brain endothelial cells, astrocytes, and neurons. bioRxiv. 2018;435990:1-35.
  • Nam L, Coll C, Erthal LCS, et al. Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. Materials (Basel. 2018;11:5.
  • Ostermann S, Csajka C, Buclin T, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. 2004;10(11):3728–3736.
  • Buie LW, Valgus JM. Current Treatment Options for the Management of Glioblastoma Multiforme. J Hematol Oncol Pharm. 2012;2:2.
  • Wu M, Fan Y, Lv S, et al. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv. 2016;23(8):2720–2725.
  • Deligne C, Hachani J, Duban-Deweer S, et al. Development of a human in vitro blood-brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Fluids Barriers CNS. 2020;17(1):37.
  • Jeffrey P, Summerfield S. Assessment of the blood-brain barrier in CNS drug discovery. Neurobiol Dis. 2010;37(1):33–37.
  • Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–449.
  • Sweeney MD, Zhao Z, Montagne A, et al. Blood-Brain Barrier: from Physiology to Disease and Back. Physiol Rev. 2019;99(1):21–78.
  • Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19(6):771–783.
  • Hopkins AM, DeSimone E, Chwalek K, et al. 3D in vitro modeling of the central nervous system. Prog Neurobiol. 2015;125:1–25.
  • Gomez-Zepeda D, Taghi M, Scherrmann JM, et al. Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics. 2019;12:1.
  • Pardridge WM. Molecular biology of the blood-brain barrier. Mol Biotechnol. 2005;30(1):57–70.
  • Morris ME, Rodriguez-Cruz V, Felmlee MASLC, et al. Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. Aaps J. 2017;19(5):1317–1331.
  • Tachikawa M, Uchida Y, Ohtsuki S, et al. Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: pharmaceutical Relevance for Drug Delivery to the Brain. In: Hammarlund-Udenaes, M, de Lange, ECM, Thorne, RG (Eds.), Drug Delivery to the Brain: Physiological Concepts, Methodologies and Approaches. New York: Springer, 2014: 23–62.
  • Miller DS. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther. 2015;97(4):395–403.
  • Begley DJ. ABC transporters and the blood-brain barrier. Curr Pharm Des. 2004;10(12):1295–1312.
  • Grube M, Hagen P, Jedlitschky G. Neurosteroid Transport in the Brain: role of ABC and SLC Transporters. Front Pharmacol. 2018;9:354.
  • Verscheijden LFM, van Hattem AC, Pertijs J, et al. Developmental patterns in human blood-brain barrier and blood-cerebrospinal fluid barrier ABC drug transporter expression. Histochem Cell Biol. 2020;154(3):265–273.
  • Warren MS, Zerangue N, Woodford K, et al. Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res. 2009;59(6):404–413.
  • Qosa H, Miller DS, Pasinelli P, et al. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res. 2015;1628(Pt B):298–316.
  • Kopcho N, Chang G, Komives EA. Dynamics of ABC Transporter P-glycoprotein in Three Conformational States. Sci Rep. 2019;9(1):15092.
  • van Assema DM, Lubberink M, Rizzu P, et al. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012;2(1):57.
  • Schinkel AHP. Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36(2–3):179–194.
  • de Trizio I, Errede M, d'Amati A, et al. Expression of P-gp in Glioblastoma: what we can Learn from Brain Development. Curr Pharm Des. 2020;26(13):1428–1437.
  • Spiegl-Kreinecker S, Buchroithner J, Elbling L, et al. Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes. J Neurooncol. 2002;57(1):27–36.
  • Bahr O, Rieger J, Duffner F, et al. P-glycoprotein and multidrug resistance-associated protein mediate specific patterns of multidrug resistance in malignant glioma cell lines, but not in primary glioma cells. Brain Pathol. 2003;13(4):482–494.
  • Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos. 2014;42(4):623–631.
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–1972.
  • Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733–1744.
  • Katakowski M, Chopp M. Exosomes as Tools to Suppress Primary Brain Tumor. Cell Mol Neurobiol. 2016;36(3):343–352.
  • Mirzaei R, Sarkar S, Dzikowski L, et al. Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Oncoimmunology. 2018;7(10):e1478647.
  • Wood MJ, O’Loughlin AJ, Samira L. Exosomes and the blood-brain barrier: implications for neurological diseases. Ther Deliv. 2011;2(9):1095–1099.
  • Rafi MA, Omidi Y. A prospective highlight on exosomal nanoshuttles and cancer immunotherapy and vaccination. Bioimpacts. 2015;5(3):117–122.
  • O’Loughlin AJ, Woffindale CA, Wood MJ. Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther. 2012;12(4):262–274.
  • Grapp M, Wrede A, Schweizer M, et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun. 2013;4:2123.
  • Sun D, Zhuang X, Zhang S, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv Drug Deliv Rev. 2013;65(3):342–347.
  • Kudarha RR, Sawant KK. Chondroitin sulfate conjugation facilitates tumor cell internalization of albumin nanoparticles for brain-targeted delivery of temozolomide via CD44 receptor-mediated targeting. Drug Deliv Transl Res. 2020,in press.
  • Gumbleton M, Hollins AJ, Omidi Y, et al. Targeting caveolae for vesicular drug transport. J Control Release. 2003;87(1–3):139–151.
  • Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv. 2012;9(6):671–686.
  • Gao X, Li C. Nanoprobes visualizing gliomas by crossing the blood brain tumor barrier. Small. 2014;10(3):426–440.
  • Parodi A, Rudzinska M, Deviatkin AA, et al. Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics. 2019;11:5.
  • Wu SK, Tsai CL, Huang Y, et al. Microbubbles-Mediated Drug Delivery to Brain Tumor. Pharmaceutics. 2020;13:1.
  • Krizbai IA, Gasparics A, Nagyoszi P, et al. Endothelial-mesenchymal transition of brain endothelial cells: possible role during metastatic extravasation. PLoS One. 2015;10(3):e0119655.
  • Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–446.
  • Surgeons AAoN. Brain Tumors. (Ed.^(Eds) (2019 Jul 15)
  • Perkins A, Liu G. Primary Brain Tumors in Adults: diagnosis and Treatment. Am Fam Physician. 2016;93(3):211–217.
  • Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–820.
  • Kleihues P, Louis DN, Scheithauer BW, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61(3):215–225. discussion 226–219.
  • Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.
  • Long DM. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg. 1970;32(2):127–144.
  • Luissint AC, Artus C, Glacial F, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23.
  • Lochhead JJ, Yang J, Ronaldson PT, et al. Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol. 2020;11:914.
  • Hasko J, Fazakas C, Molnar K, et al. Response of the neurovascular unit to brain metastatic breast cancer cells. Acta Neuropathol Commun. 2019;7(1):133.
  • Wilhelm I, Fazakas C, Molnar K, et al. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab. 2018;38(4):563–587.
  • Lee J, Lund-Smith C, Borboa A, et al. Glioma-induced remodeling of the neurovascular unit. Brain Res. 2009;1288:125–134.
  • Runkle EA, Mu D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett. 2013;337(1):41–48.
  • Liebner S, Fischmann A, Rascher G, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3):323–331.
  • Lamszus K, Laterra J, Westphal M, et al. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci. 1999;17(5–6):517–530.
  • Presta I, Vismara M, Novellino F, et al. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci. 2018;19:12.
  • Gao H, Jiang X. Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging. 2013;13(4):466–481.
  • Kim WY, Lee HY. Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors. Febs J. 2009;276(17):4653–4664.
  • Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev. 2017;18(1):3–9.
  • Jain RK, Di Tomaso E, Duda DG, et al. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–622.
  • Plate KH, Mennel HD. Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol. 1995;47(2–3):89–94.
  • Lamszus K. PK. M Westphal Invasion as Limitation to Anti-angiogenic Glioma Therapy Acta Neurochir. 2003;88:pp 169–177.
  • Bullitt E, Reardon DA, Smith JK. A review of micro-and macrovascular analyses in the assessment of tumor-associated vasculature as visualized by MR. Neuroimage. 2007;37:S116–S119.
  • Murthy RK, Loi S, Okines A, et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N Engl J Med. 2020;382(7):597–609.
  • Ellingson BM, Harris RJ, Woodworth DC, et al. Baseline pretreatment contrast enhancing tumor volume including central necrosis is a prognostic factor in recurrent glioblastoma: evidence from single and multicenter trials. Neuro Oncol. 2017;19(1):89–98.
  • Albittar AA, Alhalabi O, Glitza Oliva IC. Immunotherapy for Melanoma. Adv Exp Med Biol. 2020;1244:51–68.
  • Ebrahimi-Fakhari D, Franz DN. Pharmacological treatment strategies for subependymal giant cell astrocytoma (SEGA. Expert Opin Pharmacother. 2020;21(11):1329–1336.
  • Wick W, Gorlia T, Bendszus M, et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N Engl J Med. 2017;377(20):1954–1963.
  • Bell EH, Pugh SL, McElroy JP, et al. Molecular-Based Recursive Partitioning Analysis Model for Glioblastoma in the Temozolomide Era: A Correlative Analysis Based on NRG Oncology RTOG 0525. JAMA Oncol. 2017;3(6):784–792.
  • Vredenburgh JJ, Desjardins A, Reardon DA, et al. Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol. 2009;11(1):80–91.
  • Solero CL, Monfardini S, Brambilla C, et al. Controlled study with BCNU vs. CCNU as adjuvant chemotherapy following surgery plus radiotherapy for glioblastoma multiforme. Cancer Clin Trials. 1979;2(1):43–48.
  • Walker MD, Gehan EA. Clinical studies in malignant gliomas and their treatment with the nitrosoureas. Cancer Treat Rep. 1976;60(6):713–716.
  • Lee CY. Strategies of temozolomide in future glioblastoma treatment. Onco Targets Ther. 2017;10:265–270.
  • Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers (Basel. 2014;6(3):1769–1792.
  • Malmstrom A, Gronberg BH, Marosi C, et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–926.
  • Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain Sci. 2017;7:12.
  • Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int. 2014;5:64.
  • Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–466.
  • Fernandes C, Costa A, Osorio L, et al. Fernandes C, Costa A, Osorio L, et al. Current Standards of Care in Glioblastoma Therapy. In: De Vleeschouwer S, editor. Glioblastoma. Brisbane (AU): Codon Publications; 2017. p. 197-241.Current Standards of Care in Glioblastoma Therapy. In: De Vleeschouwer S, editor. Brisbane (AU): Codon Publications, 2017. p. 197-241.
  • Friedman HS, Petros WP, Friedman AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol. 1999;17(5):1516–1525.
  • Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–4740.
  • Medicine USNLo. ClinicalTrials.gov.
  • Gainer JL, Sheehan JP, Larner JM, et al. Trans sodium crocetinate with temozolomide and radiation therapy for glioblastoma multiforme. J Neurosurg. 2017;126(2):460–466.
  • Norden AD, Schiff D, Ahluwalia MS, et al. Phase II trial of triple tyrosine kinase receptor inhibitor nintedanib in recurrent high-grade gliomas. J Neurooncol. 2015;121(2):297–302.
  • Mulvihill JJ, Cunnane EM, Ross AM, et al. Drug delivery across the blood-brain barrier: recent advances in the use of nanocarriers. Nanomed. 2020;15(2):205–214.
  • Pardridge WM. Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release. 2007;122(3):345–348.
  • Grabrucker AM, Chhabra R, Belletti D, et al. Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. In: Fricker G, Ott M, Mahringer Aeditors. The Blood Brain Barrier (BBB). Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 71–89.
  • Wang L, Lieberman BP, Ploessl K, et al. Synthesis and evaluation of (1)(8)F labeled FET prodrugs for tumor imaging. Nucl Med Biol. 2014;41(1):58–67.
  • Cai L, Kirchleitner SV, Zhao D, et al. Glioblastoma Exhibits Inter-Individual Heterogeneity of TSPO and LAT1 Expression in Neoplastic and Parenchymal Cells. Int J Mol Sci. 2020;21:2.
  • Oddone N, Pederzoli F, Duskey JT, et al. ROS-responsive “smart” polymeric conjugate: synthesis. Characterization and Proof-of-concept Study Int J Pharm. 2019;570:118655.
  • Zybina A, Anshakova A, Malinovskaya J, et al. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy. Int J Pharm. 2018;547(1–2):10–23.
  • Klukovits A, Krajcsi P. Mechanisms and therapeutic potential of inhibiting drug efflux transporters. Expert Opin Drug Metab Toxicol. 2015;11(6):907–920.
  • Newman MJ, Dixon R, Toyonaga B. OC144-093, a novel P glycoprotein inhibitor for the enhancement of anti-epileptic therapy. Novartis Found Symp. 2002;243: 213–226. discussion 226–230, 231–215.
  • Sadanand V, Kankesan J, Yusuf A, et al. Effect of PSC 833, a potent inhibitor of P-glycoprotein, on the growth of astrocytoma cells in vitro. Cancer Lett. 2003;198(1):21–27.
  • Jekerle V, Klinkhammer W, Scollard DA, et al. In vitro and in vivo evaluation of WK-X-34, a novel inhibitor of P-glycoprotein and BCRP, using radio imaging techniques. Int J Cancer. 2006;119(2):414–422.
  • Zeng W, Kwan Law BY, Wai Wong VK, et al. HM30181A, a potent P-glycoprotein inhibitor, potentiates the absorption and in vivo antitumor efficacy of paclitaxel in an orthotopic brain tumor model. Cancer Biol Med. 2020;17(4):986–1001.
  • Olson DP, Scadden DT, D’Aquila RT, et al. The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1. AIDS. 2002;16(13):1743–1747.
  • Kannan P, Telu S, Shukla S, et al. The “specific” P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci. 2011;2(2):82–89.
  • Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000;28(6):655–660.
  • Dagenais C, Graff CL, Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004;67(2):269–276.
  • Zamek-Gliszczynski MJ, Kalvass JC, Pollack GM, et al. Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab Dispos. 2009;37(2):386–390.
  • Lu CT, Zhao YZ, Wong HL, et al. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine. 2014;9:2241–2257.
  • Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5(2):79–88.
  • Vukelja SJ, Anthony SP, Arseneau JC, et al. Phase 1 study of escalating-dose OncoGel (ReGel/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anticancer Drugs. 2007;18(3):283–289.
  • Sheleg SV, Korotkevich EA, Zhavrid EA, et al. Local chemotherapy with cisplatin-depot for glioblastoma multiforme. J Neurooncol. 2002;60(1):53–59.
  • DiMeco F, Li KW, Tyler BM, et al. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats. J Neurosurg. 2002;97(5):1173–1178.
  • Current DX. Strategies for Brain Drug Delivery. Theranostics. 2018;8(6):1481–1493.
  • Sheikov N, McDannold N, Sharma S, et al. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol. 2008;34(7):1093–1104.
  • Zhang J, Liu H, Du X, et al. Increasing of blood-brain tumor barrier permeability through transcellular and paracellular pathways by microbubble-enhanced diagnostic ultrasound in a C6 glioma model. Front Neurosci. 2017;11:86.
  • Park J, Aryal M, Vykhodtseva N, et al. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release. 2017;250:77–85.
  • Samiotaki G, Karakatsani ME, Buch A, et al. Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates. Magn Reson Imaging. 2017;37:273–281.
  • Xhima K, Weber-Adrian D, Silburt J. Glutamate induces blood–brain barrier permeability through activation of N-methyl-D-aspartate receptors. J Neurosci. 2016;36(49):12296–12298.
  • Smart Multifunctional OY. Theranostics: simultaneous Diagnosis and Therapy of Cancer. BioImpacts. 2011;1(3):145–147.
  • Wu X, Yang H, Yang W, et al. Nanoparticle-based diagnostic and therapeutic systems for brain tumors. J Mater Chem B. 2019;7(31):4734–4750.
  • Barar J, Omidi Y. Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts. 2014;4(1):3–14.
  • Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–1922.
  • Eslaminejad T, Nematollahi-Mahani SN, Ansari M. Glioblastoma Targeted Gene Therapy Based on pEGFP/p53-Loaded Superparamagnetic Iron Oxide Nanoparticles. Curr Gene Ther. 2017;17(1):59–69.
  • Wahab R, Kaushik N, Khan F, et al. Gold quantum dots impair the tumorigenic potential of glioma stem-like cells via beta-catenin downregulation in vitro. Int J Nanomedicine. 2019;14:1131–1148.
  • Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019;11(13):6192–6205.
  • Shamsipour M, Mansouri AM, Moradipour P. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release. AAPS PharmSciTech. 2019;20(7):259.
  • Razpotnik R, Novak N, Curin Serbec V, et al. Targeting Malignant Brain Tumors with Antibodies. Front Immunol. 2017;8:1181.
  • Alizadeh S, Esmaeili A, Barzegari A, et al. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target. 2020;28(7–8):700–713.
  • Tamura K, Wakimoto H, Agarwal AS, et al. Multimechanistic tumor targeted oncolytic virus overcomes resistance in brain tumors. Mol Ther. 2013;21(1):68–77.
  • Duebgen M, Martinez-Quintanilla J, Tamura K, et al. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst. 2014;106(6):dju090.
  • Martinez-Quintanilla J, He D, Wakimoto H, et al. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther. 2015;23(1):108–118.
  • Pisklakova A, McKenzie B, Zemp F, et al. M011L-deficient oncolytic myxoma virus induces apoptosis in brain tumor-initiating cells and enhances survival in a novel immunocompetent mouse model of glioblastoma. Neuro Oncol. 2016;18(8):1088–1098.
  • Spinelli C, Adnani L, Choi D, et al. Extracellular Vesicles as Conduits of Non-Coding RNA Emission and Intercellular Transfer in Brain Tumors. Noncoding RNA. 2018;5:1.
  • Van’t Root M, Lowik C, Mezzanotte L. Targeting Nanomedicine to Brain Tumors: latest Progress and Achievements. Curr Pharm Des. 2017;23(13):1953–1962.
  • Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–2014.
  • Monaco I, Camorani S, Colecchia D, et al. Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood-Brain Barrier. J Med Chem. 2017;60(10):4510–4516.
  • Han L, Kong DK, Zheng MQ, et al. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano. 2016;10(4):4209–4218.
  • Li S, Amat D, Peng Z, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. 2016;8(37):16662–16669.
  • Tang J, Huang N, Zhang X, et al. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine. 2017;12:3899–3911.
  • Orringer DA, Koo YE, Chen T, et al. In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery. 2009;64(5):965–971. discussion 971–962.
  • Brioschi A, Zenga F, Zara GP, et al. Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurol Res. 2007;29(3):324–330.
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed. 2016;11(6):673–692.
  • Kang JH, Cho J, Ko YT. Investigation on the effect of nanoparticle size on the blood-brain tumour barrier permeability by in situ perfusion via internal carotid artery in mice. J Drug Target. 2019;27(1):103–110.
  • Betzer O, Shilo M, Opochinsky R, et al. The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomed. 2017;12(13):1533–1546.
  • De Jong WH, Hagens WI, Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–1919.
  • Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release. 2012;161(2):152–163.
  • Bors LA, Erdő F. Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery. Sci Pharm. 2019;87(1):6.
  • Vecsernyés M, Fenyvesi F, Bácskay I, et al. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res. 2014;45(8):711–729.
  • Tilloy S, Monnaert V, Fenart L, et al. Methylated beta-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood-brain barrier. Bioorg Med Chem Lett. 2006;16(8):2154–2157.
  • Gaillard, PJ, Visser CC, de Boer M, et al. Blood-to-Brain Drug Delivery Using Nanocarriers. In: Hammarlund-Udenaes, M, de Lange, ECM, Thorne, RG (Eds.), Drug Delivery to the Brain: Physiological Concepts, Methodologies and Approaches. New York: Springer, 2014: 23–62.
  • Rip J. Liposome technologies and drug delivery to the CNS. Drug Discov Today Technol. 2016;20:53–58.
  • Noble GT, Stefanick JF, Ashley JD, et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45.
  • Gao H. Perspectives on Dual Targeting Delivery Systems for Brain Tumors. J Neuroimmune Pharmacol. 2017;12(1):6–16.
  • Gao JQ, Lv Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials. 2013;34(22):5628–5639.
  • Kang S, Duan W, Zhang S, et al. Muscone/ RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics. 2020;10(10):4308–4322.
  • Kuo YC, Lee CH. Dual targeting of solid lipid nanoparticles grafted with 83-14 MAb and anti-EGF receptor for malignant brain tumor therapy. Life Sci. 2016;146:222–231.
  • Zhang J, Xiao X, Zhu J, et al. Lactoferrin- and RGD-comodified. Temozolomide and Vincristine-coloaded Nanostructured Lipid Carriers for Gliomatosis Cerebri Combination Therapy Int J Nanomedicine. 2018;13:3039–3051.
  • Xu M, Li G, Zhang H, et al. Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv. 2020;27(1):983–995.
  • Marin E, Briceno MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine. 2013;8:3071–3090.
  • Bernal GM, LaRiviere MJ, Mansour N, et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomed. 2014;10(1):149–157.
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17(8):564–574.
  • de la Torre C, The Delivery CV. Challenge in Neurodegenerative Disorders: the Nanoparticles Role in Alzheimer’s Disease Therapeutics and Diagnostics. Pharmaceutics. 2018;10:4.
  • Uram L, Misiorek M, Pichla M, et al. The Effect of Biotinylated PAMAM G3 Dendrimers Conjugated with COX-2 Inhibitor (celecoxib) and PPARgamma Agonist (Fmoc-L-Leucine) on Human Normal Fibroblasts. Immortalized Keratinocytes and Glioma Cells in Vitro Mol. 2019;24:20.
  • Velasco-Aguirre C, Morales F, Gallardo-Toledo E, et al. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomedicine. 2015;10:4919–4936.
  • Sela H, Cohen H, Elia P, et al. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB. J Nanobiotechnology. 2015;13:71.
  • Cole LE, Ross RD, Tilley JM, et al. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomed. 2015;10(2):321–341.
  • Feng Q, Shen Y, Fu Y, et al. Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting. Theranostics. 2017;7(7):1875–1889.
  • CNT OY. Nanobombs for Specific Eradication of Cancer Cells: A New Concept in Cancer Theranostics. Bioimpacts. 2011;1(4):199–201.
  • Dolatkhah M, Hashemzadeh N, Barar J, et al. Graphene-based multifunctional nanosystems for simultaneous detection and treatment of breast cancer. Colloids Surf B Biointerfaces. 2020;193:111104.
  • Vardharajula S, Ali SZ, Tiwari PM, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine. 2012;7:5361.
  • Kafa H, Wang JT, Rubio N, et al. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo. Biomaterials. 2015;53:437–452.
  • Gao X, Yue Q, Liu Y, et al. Image-guided chemotherapy with specifically tuned blood brain barrier permeability in glioma margins. Theranostics. 2018;8(11):3126–3137.
  • Sattiraju A, Sun Y, Solingapuram Sai KK, et al. Maximizing Local Access to Therapeutic Deliveries in Glioblastoma. Part IV: Image-Guided, Remote-Controlled Opening of the Blood-Brain Barrier for Systemic Brain Tumor Therapy. In: De Vleeschouwer S, editor Glioblastoma. Brisbane (AU): Exon Publications, 2017:395-404.
  • Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J Pharm Sci. 2001;90(11):1681–1698.
  • Li Y, Li D, Zhao P, et al. Systems in Diagnosis of Alzheimer’s Disease and Biomimetic Modeling. Micromachines (Basel. 2020;11:9.
  • Wang X, Hou Y, Ai X, et al. Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development. Biomed Pharmacother. 2020;132:110822.
  • Prabhakarpandian B, Shen MC, Nichols JB, et al. SyM-BBB: a microfluidic Blood Brain Barrier model. Lab Chip. 2013;13(6):1093–1101.
  • Di Marco A, Vignone D, Gonzalez Paz O, et al. Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System. Cells. 2020; 9(4):1-22.
  • Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target. 2007;15(4):253–268.
  • Omidi Y, Barar J, Ahmadian S, et al. Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Cell Biochem Funct. 2008;26(3):381–391.
  • Barar J, Gumbleton M, Asadi M, et al. Barrier functionality and transport machineries of human ECV304 cells. Med Sci Monit. 2010;16(1):BR52–60.
  • Nakhlband A, Omidi Y. Barrier functionality of porcine and bovine brain capillary endothelial cells. Bioimpacts. 2011;1(3):153–159.
  • Omidi Y, Campbell L, Barar J, et al. Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood-brain barrier model for drug uptake and transport studies. Brain Res. 2003;990(1–2):95–112.
  • Franke H, Galla H, Beuckmann CT. Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protoc. 2000;5(3):248–256.
  • Motallebnejad P, Thomas A, Swisher SL, et al. An isogenic hiPSC-derived BBB-on-a-chip. Biomicrofluidics. 2019;13(6):064119.
  • Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–890.
  • van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12.
  • Mathew RK, Rutka JT. Diffuse Intrinsic Pontine Glioma: clinical Features, Molecular Genetics, and Novel Targeted Therapeutics. J Korean Neurosurg Soc. 2018;61(3):343–351.
  • Hammarlund-Udenaes M, Friden M, Syvanen S, et al. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–1750.
  • Kakee A, Terasaki T, Sugiyama Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther. 1996;277(3):1550–1559.
  • Smith QR, Samala R. In Situ and In Vivo Animal Models. In: Hammarlund-Udenaes, M, de Lange, ECM, Thorne, RG (Eds.), In: Drug Delivery to the Brain: physiological Concepts, Methodologies and Approaches. New York: Springer, 2014: 199–212.
  • Raimondi I, Izzo L, Tunesi M, et al. Organ-On-A-Chip in vitro Models of the Brain and the Blood-Brain Barrier and Their Value to Study the Microbiota-Gut-Brain Axis in Neurodegeneration. Front Bioeng Biotechnol. 2019;7(435):1-17.
  • Mofazzal Jahromi MA, Abdoli A, Rahmanian M, et al. Microfluidic Brain-on-a-Chip: perspectives for Mimicking Neural System Disorders. Mol Neurobiol. 2019;56(12):8489–8512.
  • Miccoli B, Braeken D, Li YE. Brain-on-a-chip Devices for Drug Screening and Disease Modeling Applications. Curr Pharm Des. 2018;24(45):5419–5436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.