1,984
Views
2
CrossRef citations to date
0
Altmetric
Review

Concomitant use of dexamethasone and tetracyclines: a potential therapeutic option for the management of severe COVID-19 infection?

ORCID Icon, , , , & ORCID Icon
Pages 315-322 | Received 02 Oct 2020, Accepted 08 Feb 2021, Published online: 08 Mar 2021

References

  • WHO Coronavirus Disease (COVID-19) Situation reports 2021. [cited 2021 Jan 19]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  • Wu Z, McGoogan JM Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; DOI:10.1001/jama.2020.2648.
  • Wu J, Wu X, Zeng W, et al. Chest CT Findings in Patients With Coronavirus Disease 2019 and Its Relationship With Clinical Features. Invest Radiol. 2020;55(5):257–261.
  • Zhang S, Li H, Huang S, et al. High-resolution computed tomography features of 17 cases of coronavirus disease 2019 in Sichuan province, China. Eur Respir J. 2020;55(4):2000334.
  • Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol. 2013;48:742–748.
  • Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170:1136–1147.
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422.
  • Durbin RK, Kotenko SV, Durbin JE. Interferon induction and function at the mucosal surface. Immunol Rev. 2013;255:25–39.
  • Pothlichet J, Meunier I, Davis BK, et al. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog. 2013;9:e1003256.
  • Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128..
  • Bradley BT, Maioli H, Johnston R, et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020;396(10247):320–332..
  • Hariri LP, North CM, Shih AR, et al. Lung Histopathology in Coronavirus Disease 2019 as Compared With Severe Acute Respiratory Sydrome and H1N1 Influenza: A Systematic Review. Chest. 2021;159:73–84
  • Naik GOA. COVID-19 and the Renin-Angiotensin-Aldosterone System. Clin Infect Dis. 2020. DOI:10.1093/cid/ciaa818.
  • Mascolo A, Scavone C, Rafaniello C, et al. Renin-Angiotensin System and Coronavirus Disease 2019: a Narrative Review. Front Cardiovasc Med [Internet]. 2020 [cited 2020 Dec 22]. Available from: https://www.frontiersin.org/articles/10.3389/fcvm.2020.00143/full
  • Thompson BT. Corticosteroids for ARDS. Minerva anestesiologica. 2010;76(6):441–447.
  • Torres Acosta MA, Singer BD. Pathogenesis of COVID-19-induced ARDS: implications for an aging population [published online ahead of print, 2020 Aug 3]. Eur Respir J. 2020;2002049. DOI:10.1183/13993003.02049-2020.
  • Tang Y, Liu J, Zhang D, et al. Cytokine Storm in COVID-19: the Current Evidence and Treatment Strategies. Front Immunol. 2020;11:1708.
  • Song P, Li W, Xie J, et al. Cytokine storm induced by SARS-CoV-2 [published online ahead of print, 2020 Jun 10]. Clin Chim Acta. 2020;509:280–287.
  • Ng HH, Narasaraju T, Phoon MC, et al. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Exp Mol Pathol. 2012;92(3):287–295.
  • Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–539.
  • Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019;11(1):E59.
  • Ueland T, Holter JC, Holten AR, et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J Infect. 2020;81(3):e41–e43.
  • Bongetta D, Calloni T, Colombo EV, et al. Do matrix metalloproteases mediate the SARS-CoV-2-related damage to the central nervous system? Brain Behav Immun. 2020;88:35.
  • Mahase E. Covid- 19: demand for dexamethasone surges as RECOVERY trial. BMJ. 2020;369:m2512.
  • WHO welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients 2020. [cited 2020 Aug 27]. Available from: https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-covid-19-patients
  • Coronavirus breakthrough: dexamethasone is first drug shown to save lives. [cited 2020 Aug 27]. Available from:https://www.nature.com/articles/d41586–020–01824–5
  • Sodhi M, Etminan M. Therapeutic Potential for Tetracyclines in the Treatment of COVID-19. Pharmacotherapy. 2020;40(5):487–488.
  • *Singh H, Kakkar AK, Chauhan P. Repurposing minocycline for COVID-. 19 management: mechanisms, opportunities, and challenges [published online ahead of print, 2020 Jul 1]. Expert Rev Anti Infect Ther. 2020;1–7. DOI:10.1080/14787210.2020.1782190..
  • Diana G, Strollo R, Diana D, et al. Cardiac safety and potential efficacy: two reasons for considering minocycline in place of azithromycin in COVID-19 management. Eur Heart J Cardiovasc Pharmacother. 2020. DOI:10.1093/ehjcvp/pvaa049..
  • Timmermans S, Souffriau J, Libert C, et al. Introduction to Glucocorticoid Biology. Front Immunol. 2019;10:1545.
  • DECADRON® (DEXAMETHASONE TABLETS, USP). [cited 2020 Aug 17]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/11664slr062_decadron_lbl.pdf
  • Wiegers GJ, Reul JM. Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends Pharmacol Sci. 1998;19(8):317–321.
  • Eberhardt W, Schulze M, Engels C, et al. Glucocorticoid-mediated suppression of cytokine-induced matrix metalloproteinase-9 expression in rat mesangial cells: involvement of nuclear factor-kappaB and Ets transcription factors. Mol Endocrinol. 2002;16(8):1752–1766.
  • Auphan N, DiDonato JA, Rosette C, et al. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270(5234):286–290.
  • Pace TW, Miller AH. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci. 2009;1179:86–105.
  • Thompson BT. Glucocorticoids and acute lung injury. Crit Care Med. 2003;31(4 Suppl):S253–257.
  • Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473–475.
  • Yang Z, Liu J, Zhou Y, et al. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020;81(1):e13–e20.
  • Veronese N, Demurtas J, Yang L, et al. Use of Corticosteroids in Coronavirus Disease 2019 Pneumonia: a Systematic Review of the Literature. Front Med (Lausanne). 2020;7:170.
  • RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384:693–704.
  • Beigel JH, Tomashek KM, Dodd LE, et al. ACTT-1 Study Group Members. Remdesivir for the treatment of covid-19—preliminary report. N Engl J Med. 2020. DOI:10.1056/NEJMoa2007764.
  • Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569–1578.
  • Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26:845–848.
  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020. DOI:10.1001/jamainternmed.2020.0994.
  • Chen RC, Tang XP, Tan SY, et al. Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience. Chest. 2006;129:1441–1452.
  • Smits HH, Grünberg K, Derijk RH, et al. Cytokine release and its modulation by dexamethasone in whole blood following exercise. Clin Exp Immunol. 1998;111(2):463–468.
  • Schuld A, Kraus T, Haack M, et al. Effects of dexamethasone on cytokine plasma levels and white blood cell counts in depressed patients. Psychoneuroendocrinology. 2001;26(1):65–76.
  • El Azab SR, Rosseel PM, de Lange JJ, et al. Dexamethasone decreases the pro- to anti-inflammatory cytokine ratio during cardiac surgery. Br J Anaesth. 2002;88(4):496–501.
  • Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276.
  • The National Institutes of Health COVID-19 2020. Treatment Guidelines Panel Provides Recommendations for Dexamethasone in Patients with COVID-19. [cited 2020 Aug 27]. Available from: https://www.covid19treatmentguidelines.nih.gov/dexamethasone/
  • WHO. Q&A: dexamethasone and COVID-19 2020. [cited 2020 Aug 27]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-dexamethasone-and-covid-19?gclid=CjwKCAjwmrn5BRB2EiwAZgL9onlQZ4vlAexO-xmmFH8W9arD8t7FFXJ6fQycJxvXJlrialCFn-VLlxoCi9UQAvD_BwE
  • Nelson BC, Laracy J, Shoucri S, et al. Clinical Outcomes Associated with Methylprednisolone in Mechanically Ventilated Patients with COVID-19. Clin Infect Dis. 2020;ciaa1163. DOI:10.1093/cid/ciaa1163..
  • Meduri GU, Siemieniuk RAC, Ness RA, et al. Prolonged low-dose methylprednisolone treatment is highly effective in reducing duration of mechanical ventilation and mortality in patients with ARDS. J Intensive Care. 2018;6:53.
  • Meduri GU, Golden E, Freire AX, et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest. 2007;131:954–963.
  • Meduri GU, Headley S, Golden E, et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998;280:159–165.
  • Salton F, Confalonieri P, Meduri GU, et al. Prolonged Low-Dose Methylprednisolone in Patients With Severe COVID-19 Pneumonia. Open Forum Infect Dis. 2020;7(10):ofaa421.
  • Cano EJ, Fuentes XF, Campioli CC, et al. Impact of corticosteroids in COVID-19 outcomes: systematic review and meta-analysis. Chest. 2020;28.
  • Rochwerg B, Oczkowski SJ, Siemieniuk RAC, et al. Corticosteroids in Sepsis: an Updated Systematic Review and Meta-Analysis. Crit Care Med. 2018;46(9):1411–1420.
  • Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst Rev. 2019;12.
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–260.
  • Garrido-Mesa J, Rodríguez-Nogales A, Algieri F, et al. Immunomodulatory tetracyclines shape the intestinal inflammatory response inducing mucosal healing and resolution. Br J Pharmacol. 2018;175(23):4353–4370.
  • Chauhan P, Kakkar AK, Singh H, et al. Minocycline for the management of multiple sclerosis: repositioning potential, opportunities, and challenges. Expert Rev Neurother. 2021;21(1):35–43.
  • Pradhan S, Madke B, Kabra P, et al. Anti-inflammatory and Immunomodulatory Effects of Antibiotics and Their Use in Dermatology. Indian J Dermatol. 2016;61(5):469–481.
  • Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299(3):C539–C548.
  • Francini E, Miano ST, Fiaschi AI, et al. Doxycycline or minocycline may be a viable treatment option against SARS-CoV-2 [published online ahead of print, 2020 Jun 27]. Med Hypotheses. 2020;144:110054.
  • Lee CZ, Yao JS, Huang Y, et al. Dose-response effect of tetracyclines on cerebral matrix metalloproteinase-9 after vascular endothelial growth factor hyperstimulation. J Cereb Blood Flow Metab. 2006;26(9):1157–1164.
  • Nip LH, Uitto VJ, Golub LM. Inhibition of epithelial cell matrix metalloproteinases by tetracyclines. J Periodontal Res. 1993;28(5):379–385.
  • Gnoni M, Vásquez-Garagatti R, Mena A. Possible Role of Tetracyclines on COVID-19: recycling Well-Known Old Drugs from the Shelf. Univ Louisville J Respir Infect. 2020;4(1). DOI:10.18297/jri/vol4/iss1/9.
  • Franco GC, Kajiya M, Nakanishi T, et al. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo. Exp Cell Res. 2011;317(10):1454–1464.
  • Lee CZ, Xu B, Hashimoto T, et al. Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model. Stroke. 2004;35(7):1715–1719.
  • Liu J, Xiong W, Baca-Regen L, et al. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg. 2003;38(6):1376–1383.
  • Ghasemi S, Sardari K, Mirshokraei P, et al. In vitro study of matrix metalloproteinases 1, 2, 9, 13 and serum amyloid A mRNAs expression in equine fibroblast-like synoviocytes treated with doxycycline. Can J Vet Res. 2018;82(2):82–88.
  • Chang JJ, Kim-Tenser M, Emanuel BA, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study. Eur J Neurol. 2017;24(11):1384–1391.
  • Niimi N, Kohyama K, Matsumoto Y. Minocycline suppresses experimental autoimmune encephalomyelitis by increasing tissue inhibitors of metalloproteinases. Neuropathology. 2013;33(6):612–620.
  • de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534.
  • Ogut D, Reel B, Gonen Korkmaz C, et al. Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells. Folia Histochem Cytobiol. 2016;54(4):171–180.
  • Alexander-Savino CV, Hayden MS, Richardson C, et al. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7(46):75954–75967.
  • Anta-Cecília FV, Socias B, Ouidja MO, et al. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways. Neurotox Res. 2016;29(4):447–459.
  • Weiler J, Dittmar T. Minocycline impairs TNF-α-induced cell fusion of M13SV1-Cre cells with MDA-MB-435-pFDR1 cells by suppressing NF-κB transcriptional activity and its induction of target-gene expression of fusion-relevant factors. Cell Commun Signal. 2019;17(1):71.
  • Yi Q, Tan FH, Tan JA, et al. Minocycline protects against myocardial ischemia/reperfusion injury in rats by upregulating MCPIP1 to inhibit NF-κB activation. Acta Pharmacol Sin. 2019;40(8):1019–1028.
  • Malek AE, Granwehr BP, Kontoyiannis DP. Doxycycline as a potential partner of COVID-19 therapies. IDCases. 2020;21:e00864.
  • Gonçalves-Carneiro D, Bieniasz PD. Mechanisms of Attenuation by Genetic Recoding of Viruses. mBio. 2021;12(1):e02238–20.
  • Bharadwaj S, Lee KE, Dwivedi VD, Kang SG. Computational insights into tetracyclines as inhibitors against SARS-CoV-. 2 Mpro via combinatorial molecular simulation calculations [published online ahead of print, 2020 Jul 9]. Life Sci. 2020;257:118080..
  • Xiao B. Minocycline Might Be an Adjunctive Therapy Option for the Treatment of COVID-19: In Silico Screening, Structure-affinity Relationship, and Literature Review. Preprint published Research square on 07 July, 2020. DOI:10.21203/rs.3.rs-40141/v1.
  • Gendrot M, Andreani J, Jardot P, et al. In Vitro Antiviral Activity of Doxycycline against SARS-CoV-2. Mol Basel Switz. 2020;25(21).
  • Ahmad I, Alam M, Saadi R, Mahmud S, Saadi E. Doxycycline and Hydroxychloroquine as Treatment for High-Risk COVID-. 19 Patients: experience from Case Series of 54 Patients in Long-Term Care Facilities. medRxiv. 2020;05:18.20066902..
  • Alam MM, Mahmud S, Rahman MM, et al. Clinical Outcomes of Early Treatment With Doxycycline for 89 High-Risk COVID-19 Patients in Long-Term Care Facilities in New York. Cureus. 2020;12(8):e9658.
  • Cag Y, Icten S, Isik-Goren B, et al. A novel approach to managing COVID-19 patients; results of lopinavir plus doxycycline cohort. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2020;27.
  • Yates PA, Newman SA, Oshry LJ, et al. Doxycycline treatment of high-risk COVID-19-positive patients with comorbid pulmonary disease. Ther Adv Respir Dis. 2020;14:1753466620951053.
  • Chowdhury ATMM, Shahbaz M, Karim MR, et al. A Randomized Trial of Ivermectin-Doxycycline and Hydroxychloroquine-Azithromycin therapy on COVID19 patients 2020. DOI:10.21203/rs.3.rs-38896/v1.
  • Malek AE, Granwehr BP. Doxycycline as an Alternative to Azithromycin in Elderly Patients. Int J Antimicrob Agents. 2021;57(1):106168.
  • Byrne JD, Shakur R, Collins JE, et al. 2020. Prophylaxis with tetracyclines in ARDS: potential therapy for COVID-19-induced ARDS?. https://www.medrxiv.org/content/10.1101/2020.07.22.20154542v1.full.pdf
  • Gironi LC, Damiani G, Zavattaro E, et al. Tetracyclines in COVID-19 patients quarantined at home: literature evidence supporting real-world data from a multicenter observational study targeting inflammatory and infectious dermatoses. Dermatol Ther. 2020;22:e14694.
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
  • FDA. Minocycline label 2020. [cited 2020 Aug 27]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/050649023lbl.pdf
  • DORYX® (doxycycline hyclate). [cited 2020 Aug 27]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050795s005lbl.pdf
  • Manchanda K, Singh J, Bhagat R, et al. Safety of pharmacological options for the management of COVID-19 in pregnant women: an Indian perspective. Int J Risk Safety Med. 2020;24:1–6.
  • Drug interactions checker - Medscape drug reference database [Internet]. [cited 2020 Sep 3]. Available from: https://reference.medscape.com/drug-interactionchecker
  • Corticosteroids for COVID-19 (2021). Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1 (cited 2021 Jan 27).
  • Zheng KI, Feng G, Liu W-Y, et al. Extrapulmonary complications of COVID-19: a multisystem disease? Journal of Medical Virology. 2020. DOI:10.1002/jmv.26294.
  • Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. Eur J Clin Invest. 2021;51(1):e13429.
  • Singh H, Chauhan P, Kakkar AK. Hydroxychloroquine for the treatment and prophylaxis of COVID-19: the journey so far and the road ahead. Eur J Pharmacol. 2021;890:173717.
  • Senanayake SL. Drug repurposing strategies for COVID-19. Future Drug Discov. 2020;fdd-2020–0010. DOI:10.4155/fdd-2020-0010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.