257
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Detection of mobile colistin-resistance gene variants (mcr-1 and mcr-2) in urinary tract pathogens in Bangladesh: the last resort of infectious disease management colistin efficacy is under threat

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 513-522 | Received 17 Dec 2020, Accepted 08 Mar 2021, Published online: 13 Apr 2021

References

  • Mendelson M, Brink A, Gouws J, et al. The One Health stewardship of colistin as an antibiotic of last resort for human health in South Africa. Lancet Infect Dis. 2018 Sep;18(9):e288–e294. .
  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study [research support, Non-U.S. Gov’t]. Lancet Infect Dis. 2016 Feb;16(2):161–168. .
  • Rhouma M, Beaudry F, Letellier A. Resistance to colistin: what is the fate for this antibiotic in pig production? [Review]. Int J Antimicrob Agents. 2016 Aug;48(2):119–126.
  • Wang R, Van Dorp L, Shaw LP, et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1 [Research Support, Non-U.S. Gov’t]. Nat Commun. 2018 Mar 21;9(1):1179.
  • Sun J, Zeng X, Li X-P, et al. Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev. 2017;18(2):136. .
  • Canton R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics [Research Support, Non-U.S. Gov’t Review]. FEMS Microbiol Rev. 2011 Sep;35(5):977–991.
  • Mezhoud H, Chantziaras I, Iguer-Ouada M, et al. Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria. Avian Pathol. 2016 Aug;45(4):493–500. .
  • Rebelo AR, Bortolaia V, Kjeldgaard JS, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 for surveillance purposes. Euro Surveill. 2018 Feb;23:6.
  • Hembach N, Schmid F, Alexander J, et al. Occurrence of the mcr-1 colistin resistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front Microbiol. 2017;8:1282.
  • Huang X, Yu L, Chen X, et al. High prevalence of colistin resistance and mcr-1 gene in Escherichia coli isolated from food animals in China. Front Microbiol. 2017;8:562.
  • Zhou HW, Zhang T, Ma JH, et al. Occurrence of plasmid- and chromosome-carried mcr-1 in waterborne Enterobacteriaceae in China [research support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2017 Aug;61:8.
  • Hadjadj L, Baron SA, Olaitan AO, et al. Co-occurrence of variants of mcr-3 and mcr-8 genes in a Klebsiella pneumoniae isolate from laos. Front Microbiol. 2019;10:2720.
  • Islam S, Urmi UL, Rana M, et al. High abundance of the colistin resistance gene mcr-1 in chicken gut-bacteria in Bangladesh. Sci Rep. 2020;10(1):1–11. .
  • Rohde AM, Zweigner J, Wiese-Posselt M, et al. Incidence of infections due to third-generation cephalosporin-resistant Enterobacteriaceae-a prospective multicentre cohort study in six German university hospitals. Antimicrob Resist Infect Control. 2018;7(1):1–9. .
  • Khawcharoenporn T, Vasoo S, Singh K. Urinary tract infections due to multidrug-resistant Enterobacteriaceae: prevalence and risk factors in a Chicago emergency department. Emerg Med Int. 2013;2013:2013.
  • De Maio Carrillho CM, Gaudereto JJ, Martins RCR, et al. Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy. Diagn Microbiol Infect Dis. 2017;87(3):253–257. .
  • Johura FT, Tasnim J, Barman I, et al. Colistin-resistant Escherichia coli carrying mcr-1 in food, water, hand rinse, and healthy human gut in Bangladesh. Gut Pathog. 2020;12:5.
  • Wu L, Chen J, Wang L, et al. Whole-genome sequence of an MCR-1-carrying, extended-spectrum β-lactamase (ESBL)-producing Escherichia coli ST746 isolate recovered from a community-acquired urinary tract infection. J Glob Antimicrob Resist. 2018;13:171–173.
  • Jiang B, Du P, Jia P, et al. Antimicrobial susceptibility and virulence of mcr-1-positive Enterobacteriaceae in China, a multicenter longitudinal epidemiological study. Front Microbiol. 2020;11:1611.
  • Amladi AU, Abirami B, Devi SM, et al. Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin & colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections. Indian J Med Res. 2019;149(2):185. .
  • Farzana R, Jones LS, Rahman MA, et al. Emergence of mcr-1 mediated colistin-resistant Escherichia coli from a hospitalized patient in Bangladesh [letter research support, Non-U.S. Gov’t]. J Infect Dev Ctries. 2019 Aug 31;13(8):773–776.
  • Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol. 2010;7(12):653–660.
  • Stamm WE, Counts GW, Running KR, et al. Diagnosis of coliform infection in acutely dysuric women. N Engl J Med. 1982;307(8):463–468. .
  • Djim-Adjim-Ngana K, Oumar LA, Mbiakop BW, et al. Prevalence of extended-spectrum beta-lactamase-producing enterobacterial urinary infections and associated risk factors in small children of Garoua, Northern Cameroon. Pan Afr Med J. 2020;36:36.
  • Van Der Zee A, Roorda L, Bosman G, et al. Molecular diagnosis of urinary tract infections by semi-quantitative detection of uropathogens in a routine clinical hospital setting. PloS One. 2016;11(3):e0150755. .
  • Satlin MJ, Lewis JS, Weinstein MP, et al. Clinical and laboratory standards institute and European committee on antimicrobial susceptibility testing position statements on polymyxin B and colistin clinical breakpoints. Clinl Infect Dis. 2020;71(9):e523–e529. .
  • CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th Edition. CLSI Supplement M100. Wayne PA; The Clinical and Laboratory Standards Institute; 2020. [Cited 2021 Feb 1]. Available from https://clsi.org/media/3481/m100ed30_sample.pdf.
  • Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances [Research Support, Non-U.S. Gov’t]. Nat Protoc. 2008;3(2):163–175.
  • Maalej SM, Meziou MR, Rhimi FM, et al. Comparison of disc diffusion, Etest and agar dilution for susceptibility testing of colistin against Enterobacteriaceae [Comparative Study]. Lett Appl Microbiol. 2011 Nov;53(5):546–551. .
  • Behera B, Mathur P, Das A, et al. Evaluation of susceptibility testing methods for polymyxin [Evaluation Study]. Int J Infect Dis. 2010 Jul;14(7):e596–601. .
  • Khedher MB, Baron SA, Riziki T, et al. Massive analysis of 64,628 bacterial genomes to decipher water reservoir and origin of mobile colistin resistance genes: is there another role for these enzymes? [research support, Non-U.S. Gov’t]. Sci Rep. 2020 Apr 6;10(1):5970.
  • Aghapour Z, Gholizadeh P, Ganbarov K, et al. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist. 2019;12:965.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance [Consensus Development Conference]. Clin Microbiol Infect. 2012 Mar;18(3):268–281. .
  • Saavedra SY, Diaz L, Wiesner M, et al. Genomic and molecular characterization of clinical isolates of Enterobacteriaceae harboring mcr-1 in Colombia, 2002 to 2016 [research support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2017 Dec;61:12.
  • Li X, Mu X, Zhang P, et al. Detection and characterization of a clinical Escherichia coli ST3204 strain coproducing NDM-16 and MCR-1. Infect Drug Resist. 2018;11:1189–1195.
  • San N, Aung MS, Thu PP, et al. First detection of the mcr-1 colistin resistance gene in Escherichia coli from a patient with urinary tract infection in Myanmar. New Microbes New Infect. 2019 Jul;30:100550.
  • Farzana R, Jones LS, Barratt A, et al. Emergence of mobile colistin resistance (mcr-8) in a highly successful Klebsiella pneumoniae sequence type 15 clone from clinical infections in Bangladesh. mSphere. 2020;5:2.
  • Singh S, Pathak A, Kumar A, et al. Emergence of chromosome-borne colistin resistance gene mcr-1 in clinical isolates of Klebsiella pneumoniae from India. Antimicrob Agents Chemother. 2018;62:2.
  • Hameed F, Khan MA, Muhammad H, et al. Plasmid-mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: first report from Pakistan. Rev Soc Bras Med Trop. 2019;52:52.
  • Monte DF, Mem A, Fernandes MR, et al. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America [Research Support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2017 May;61:5.
  • Trung NV, Matamoros S, Carrique-Mas JJ, et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam. Emerg Infect Dis. 2017;23(3):529. .
  • Guenther S, Falgenhauer L, Semmler T, et al. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms [Research Support, Non-U.S. Gov’t]. J Antimicrob Chemother. 2017 May 1;72(5):1289–1292.
  • Shen Y, Wu Z, Wang Y, et al. Heterogeneous and flexible transmission of mcr-1 in hospital-associated Escherichia coli [Research Support, Non-U.S. Gov’t]. mBio. 2018 Jul 3;9:4. .
  • Chowdhury N, Suhani S, Purkaystha A, et al. Identification of AcrAB-TolC efflux pump genes and detection of mutation in efflux repressor AcrR from omeprazole responsive multidrug-resistant Escherichia coli isolates causing urinary tract infections. Microbiol Insights. 2019;12:1178636119889629.
  • Zhen X, Lundborg CS, Sun X, et al. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review [Review]. Antimicrob Resist Infect Control. 2019;8:137.
  • Zeng KJ, Doi Y, Patil S, et al. Emergence of the Plasmid-Mediated mcr-1 Gene in Colistin-Resistant Enterobacter aerogenes and Enterobacter cloacae [Research Support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2016 Jun;60(6):3862–3863.
  • Nang SC, Han ML, Yu HH, et al. Polymyxin resistance in Klebsiella pneumoniae: multifaceted mechanisms utilized in the presence and absence of the plasmid-encoded phosphoethanolamine transferase gene mcr-1 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Antimicrob Chemother. 2019 Nov 1;74(11):3190–3198.
  • Liu YY, Chandler CE, Leung LM, et al. Structural modification of lipopolysaccharide conferred by mcr-1 in gram-negative ESKAPE pathogens [research support, N.I.H., extramural research support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2017 Jun;61:6.
  • Borowiak M, Baumann B, Fischer J, et al. Development of a novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 occurrence in colistin-resistant salmonella enterica isolates from environment, feed, animals, and food (2011-2018) in Germany. Front Microbiol. 2020;11:80.
  • Lin M, Yang Y, Chen G, et al. Co-occurrence of mcr-9 and bla NDM-1 in Enterobacter cloacae isolated from a patient with bloodstream infection. Infect Drug Resist. 2020;13:1397–1402.
  • Poirel L, Jayol A, Bontron S, et al. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae [Research Support, Non-U.S. Gov’t]. J Antimicrob Chemother. 2015 Jan;70(1):75–80. .
  • Sato T, Shiraishi T, Hiyama Y, et al. Contribution of novel amino acid alterations in PmrA or PmrB to colistin resistance in mcr-negative Escherichia coli clinical isolates, including major multidrug-resistant lineages O25b: H4-ST131-H30Rx and Non-x. Antimicrob Agents Chemother. 2018;62:9.
  • Leung LM, Cooper VS, Rasko DA, et al. Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;72(11):3035–3042. .
  • Cheng Y-H, Lin T-L, Lin Y-T, et al. A putative RND-type efflux pump, H239_3064, contributes to colistin resistance through CrrB in Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(6):1509–1516. .
  • Puja H, Bolard A, Noguès A, et al. The efflux pump MexXY/OprM contributes to the tolerance and acquired resistance of Pseudomonas aeruginosa to colistin. Antimicrob Agents Chemother. 2020;64:4.
  • Lin M-F, Lin -Y-Y, Lan C-Y. Contribution of EmrAB efflux pumps to colistin resistance in acinetobacter baumannii. J Microbiol. 2017;55(2):130–136.
  • Olaitan AO, Morand S, Rolain J-M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol. 2014;5:643.
  • Formosa C, Herold M, Vidaillac C, et al. Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy. J Antimicrob Chemother. 2015;70(8):2261–2270. .
  • Majumder MAA, Singh K, Hilaire MG-S, et al. Tackling antimicrobial resistance by promoting antimicrobial stewardship in medical and allied health professional curricula. Expert Rev Anti Infect Ther. 2020;18(12):1245–1258. .
  • Razzaque MS. Implementation of antimicrobial stewardship to reduce antimicrobial drug resistance. Expert Rev Anti Infect Ther. 2020 Nov 16:1–4. DOI: 10.1080/14787210.2021.1840977.
  • Dielubanza EJ, Schaeffer AJ. Urinary tract infections in women [Review]. Med Clin North Am. 2011 Jan;95(1):27–41.
  • Aydin A, Ahmed K, Zaman I, et al. Recurrent urinary tract infections in women. Int Urogynecol J. 2015;26(6):795–804. .
  • Dhingra S, Rahman NAA, Peile E, et al. Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter [Review]. Front Public Health. 2020;8:535668.
  • Meyer E, Schwab F, Schroeren-Boersch B, et al. Dramatic increase of third-generation cephalosporin-resistant E. coli in German intensive care units: secular trends in antibiotic drug use and bacterial resistance, 2001 to 2008. Crit Care. 2010;14(3):R113. .
  • Urmi UL, Nahar S, Rana M, et al. Genotypic to phenotypic resistance discrepancies identified involving beta-lactamase genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in uropathogenic Klebsiella pneumoniae. Infect Drug Resist. 2020;13:2863–2875.
  • Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463–E3470.
  • Wilson APR. Sparing carbapenem usage [Review]. J Antimicrob Chemother. 2017 Sep 1;72(9):2410–2417.
  • Arana DM, Rubio M, Alos JI. Evolution of antibiotic multi-resistance in Escherichia coli and Klebsiella pneumoniae isolates from urinary tract infections: a 12-year analysis (2003-2014). Enferm Infecc Microbiol Clin. 2017 May;35(5):293–298.
  • Masud AA, Rousham EK, Islam MA, Alam MU, Rahman M, Mamun AA, Sarker S, Asaduzzaman M, Unicomb L. Drivers of Antibiotic Use in Poultry Production in Bangladesh: Dependencies and Dynamics of a Patron-Client Relationship. Front Vet Sci. 2020 Feb 28;7:78. doi: 10.3389/fvets.2020.00078.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.