189
Views
0
CrossRef citations to date
0
Altmetric
Review

Antimicrobial safety considerations in critically ill patients: part II: focused on anti-microbial toxicities

ORCID Icon, , &
Pages 563-573 | Received 25 Mar 2022, Accepted 20 Jun 2022, Published online: 26 Jun 2022

References

  • Bhattacharyya S, Darby RR, Raibagkar P, et al. Antibiotic-associated encephalopathy. Neurology. 2016;86(10):963–971.
  • Babiak LM, Rybak MJ. Hematological effects associated with beta-lactam use. Drug Intell Clin Pharm. 1986;20(11):833–836.
  • Messmer AS, Zingg C, Müller M, et al. Fluid overload and mortality in adult critical care patients—a systematic review and meta-analysis of observational studies. Crit Care Med. 2020;48(12):1862–1870.
  • Smits WK, Lyras D, Lacy DB, et al. Clostridium difficile infection. Nat Rev Dis Primers. 2016;2(1):1–20.
  • Micek ST, Schramm G, Morrow L, et al. Clostridium difficile infection: a multicenter study of epidemiology and outcomes in mechanically ventilated patients. Crit Care Med. 2013;41(8):1968–1975.
  • Bouza E, Rodríguez-Créixems M, Alcalá L, et al. Is Clostridium difficile infection an increasingly common severe disease in adult intensive care units? A 10-year experience. J Crit Care. 2015;30(3):543–549.
  • Karanika S, Paudel S, Zervou FN, et al. Prevalence and clinical outcomes of Clostridium difficile infection in the intensive care unit: a systematic review and meta-analysis. Open Forum Infect Dis. 2016 1; 3(1):ofv186.
  • De Roo AC, Regenbogen SE. Clostridium difficile infection: an epidemiology update. Clin Colon Rectal Surg. 2020;33(2):049–57.
  • Antonelli M, Martin-Loeches I, Dimopoulos G, et al. Clostridioides difficile (formerly Clostridium difficile) infection in the critically ill: an expert statement. Intensive Care Med. 2020;46(2):215–224.
  • Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69(4):881–891.
  • Vardakas KZ, Trigkidis KK, Boukouvala E, et al. Clostridium difficile infection following systemic antibiotic administration in randomised controlled trials: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;48(1):1–10.
  • Bartoletti M, Tedeschi S, Pascale R, et al. Differences in the rate of carbapenem-resistant Enterobacteriaceae colonisation or Clostridium difficile infection following frontline treatment with tigecycline vs. meropenem for intra-abdominal infections. Int J Antimicrob Agents. 2018;51(3):516–521.
  • Carlson TJ, Gonzales-Luna AJ, Nebo K, et al. editors, Assessment of kidney injury as a severity criteria for Clostridioides Difficile infection. Open Forum Infect Dis. 2020;7(11):ofaa476.
  • Thongprayoon C, Cheungpasitporn W, Phatharacharukul P, et al. Chronic kidney disease and end‐stage renal disease are risk factors for poor outcomes of Clostridium difficile infection: a systematic review and meta‐analysis. Int Journal Clin Pract. 2015;69(9):998–1006.
  • Misra UK, Kalita J, Chandra S, et al. Association of antibiotics with status epilepticus. Neurol Sci. 2013;34(3):327–331.
  • Pestotnik SL, Classen DC, Evans RS, et al. Prospective surveillance of imipenem/cilastatin use and associated seizures using a hospital information system. Ann Pharmacother. 1993;27(4):497–501.
  • Mattappalil A, Mergenhagen KA. Neurotoxicity with antimicrobials in the elderly: a review. Clin Ther. 2014;36(11):1489–511. e4.
  • Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs: a systematic review. Neurology. 2015;85(15):1332–1341.
  • Deshayes S, Coquerel A, Verdon R. Neurological adverse effects attributable to β-lactam antibiotics: a literature review. Drug Saf. 2017;40(12):1171–1198.
  • Beumier M, Casu GS, Hites M, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015;81(5):497–506.
  • Payne LE, Gagnon DJ, Riker RR, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21(1):1–8.
  • Appa AA, Jain R, Rakita RM, et al. Characterizing cefepime neurotoxicity: a systematic review. Open Forum Infect Dis. 2017;4(4):ofx170.
  • Boschung-Pasquier L, Atkinson A, Kastner LK, et al. Cefepime neurotoxicity: thresholds and risk factors. A retrospective cohort study. Clin Microbiol Infect. 2020;26(3):333–339.
  • Huwyler T, Lenggenhager L, Abbas M, et al. Cefepime plasma concentrations and clinical toxicity: a retrospective cohort study. Clinical Microbiol Infect. 2017;23(7):454–459.
  • Lau C, Marriott D, Gould M, et al. A retrospective study to determine the cefepime-induced neurotoxicity threshold in hospitalized patients. J Antimicrob Chemother. 2020;75(3):718–725.
  • Snavely S, Hodges G. The neurotoxicity of antibacterial agents. Ann Intern Med. 1984;101(1):92–104.
  • Miller AD, Ball AM, Bookstaver PB, et al. Epileptogenic potential of carbapenem agents: mechanism of action, seizure rates, and clinical considerations. Pharmacotherapy. 2011;31(4):408–423.
  • Koppel BS, Hauser WA, Politis C, et al. Seizures in the critically ill: the role of imipenem. Epilepsia. 2001;42(12):1590–1593.
  • Calandra G, Lydick E, Carrigan J, et al. Factors predisposing to seizures in seriously III infected patients receiving antibiotics: experience with imipenem/cilastatin. Am J Med. 1988;84(5):911–918.
  • Cannon JP, Lee TA, Clark NM, et al. The risk of seizures among the carbapenems: a meta-analysis. J Antimicrob Chemother. 2014;69(8):2043–2055.
  • Chen I-L, Lee C-H, Hsiao S-C, et al. Interactions between carbapenems and valproic acid among the patients in the intensive care units. J Crit Care. 2021;62:151–156.
  • Park MK, Lim KS, Kim T-E, et al. Reduced valproic acid serum concentrations due to drug interactions with carbapenem antibiotics: overview of 6 cases. Ther Drug Monit. 2012;34(5):599–603.
  • Quinton M-C, Bodeau S, Kontar L, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2017;61(9):e00654–17.
  • Chow KM, Szeto CC, Hui ACF, et al. Retrospective review of neurotoxicity induced by cefepime and ceftazidime. Pharmacotherapy. 2003;23(3):369–373.
  • Amirouche L, Cerulli-Kanellopoulos A, Landry S, et al. Ceftazidime-induced neurotoxicity in an 80-year-old female with renal dysfunction: a case report. J Pharm Pract. 2021;35(3):482–487.
  • Rozycki A, Lewin JJ III, Tamargo R, et al. Impact of intraoperative cefazolin on postoperative seizures after elective repair of unruptured cerebral aneurysm. Am J Health Syst Pharm. 2017;74(4):213–217.
  • Jang JH, Song KS, Bang JS, et al. What should be considered to cause the early post-craniotomy seizure: antibiotics (cefazolin) irrigation. J Korean Neurosurg Soc. 2015;58(5):462.
  • Bora I, Demir AB, Uzun P. Nonconvulsive status epilepticus cases arising in connection with cephalosporins. Epilepsy Behav Case Rep. 2016;6:23–27.
  • Vanderschueren S, De Weerdt A, Malbrain M, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28(6):1871–1876.
  • Ten Berg MJ, Huisman A, Souverein PC, et al. Drug-induced thrombocytopenia. Drug Saf. 2006;29(8):713–721. .
  • Bower M, Borders C, Schnure A, et al. Platelet dysfunction and intracerebral hemorrhage in a patient treated with empiric piperacillin–tazobactam in the neurocritical care unit. World Neurosurg. 2018;114:204–210.
  • Ibáñez L, Vidal X, Ballarín E, et al. Population-based drug-induced agranulocytosis. Arch Intern Med. 2005;165(8):869–874.
  • Jiang M, Karasawa T, Steyger PS. Aminoglycoside-induced cochleotoxicity: a review. Front Cell Neurosci. 2017;11:308.
  • Ariano RE, Zelenitsky SA, Kassum DA. Aminoglycoside-induced vestibular injury: maintaining a sense of balance. Ann Pharmacother. 2008;42(9):1282–1289.
  • Dulon D, Aran J, Zajic G, et al. Comparative uptake of gentamicin, netilmicin, and amikacin in the Guinea pig cochlea and vestibule. Antimicrob Agents Chemother. 1986;30(1):96–100.
  • Fischel‐Ghodsian N. Genetic factors in aminoglycoside toxicity. Ann N Y Acad Sci. 1999;884(1):99–109.
  • Black FO, Pesznecker S, Stallings V. Permanent gentamicin vestibulotoxicity. Otol Neuroto. 2004;25(4):559–569.
  • Syed M, Leis J, Ilan O, et al. Vestibulotoxicity with systemic gentamicin in different dosing regimens: our experience in 46 patients. Clin Otolaryngo. 2017;42(5):1091–1095. .
  • Rutka J. Aminoglycoside vestibulotoxicity. Adv Otorhinolaryngol. 2019;82:101–110.
  • Von Drygalski A, Curtis BR, Bougie DW, et al. Vancomycin-induced immune thrombocytopenia. NEJM. 2007;356(9):904–910. .
  • Ajit NE, Devarashetty SP, Master S. Vancomycin induced thrombocytopenia–protracted course in a hemodialysis patient. Case Rep Oncol. 2019;12(3):749–754.
  • Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the society of infectious diseases pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98.
  • Moellering RC Jr. Pharmacokinetics of vancomycin. J Antimicrob Chemother. 1984;14(suppl D):43–52.
  • Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53(2):483–486.
  • Humphrey C, Veve MP, Walker B, et al. Long-term vancomycin use had low risk of ototoxicity. Plos one. 2019;14(11):e0224561.
  • Dryden MS. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother. 2011;66(suppl_4):iv7–iv15.
  • Tsuji Y, Holford NH, Kasai H, et al. Population pharmacokinetics and pharmacodynamics of linezolid‐induced thrombocytopenia in hospitalized patients. Br J Clin Pharmacol. 2017;83(8):1758–1772.
  • Crass RL, Cojutti PG, Pai MP, et al. Reappraisal of linezolid dosing in renal impairment to improve safety. Antimicrob Agents Chemother. 2019;63(8):e00605–19.
  • Gerson SL, Kaplan SL, Bruss JB, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother. 2002;46(8):2723–2726.
  • Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in methicillin-resistant staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54(5):621–629.
  • Rabon AD, Fisher JP, MacVane SH. Incidence and risk factors for development of thrombocytopenia in patients treated with linezolid for 7 days or greater. Ann Pharmacother. 2018;52(11):1162–1164.
  • Kim HS, Lee E, Cho YJ, et al. Linezolid‐induced thrombocytopenia increases mortality risk in intensive care unit patients, a 10 year retrospective study. J Clin Pharm Ther. 2019;44(1):84–90.
  • Attassi K, Hershberger E, Alam R, et al. Thrombocytopenia associated with linezolid therapy. Clin Infect Dis. 2002;34(5):695–698.
  • Bernstein WB, Trotta RF, Rector JT, et al. Mechanisms for linezolid-induced anemia and thrombocytopenia. Ann Pharmacother. 2003;37(4):517–520.
  • Takahashi Y, Takesue Y, Nakajima K, et al. Risk factors associated with the development of thrombocytopenia in patients who received linezolid therapy. J Infect Chemother. 2011;17(3):382–387.
  • Nukui Y, Hatakeyama S, Okamoto K, et al. High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother. 2013;68(9):2128–2133.
  • Chen C, Guo D-H, Cao X, et al. Risk factors for thrombocytopenia in adult Chinese patients receiving linezolid therapy. Curr Ther Res. 2012;73(6):195–206.
  • Kawasuji H, Tsuji Y, Ogami C, et al. Initially reduced linezolid dosing regimen to prevent thrombocytopenia in hemodialysis patients. Antibiotics. 2021;10(5):496.
  • Kawasuji H, Tsuji Y, Ogami C, et al. Proposal of initial and maintenance dosing regimens with linezolid for renal impairment patients. BMC Pharmaco Toxicol. 2021;22(1):1–13.
  • Niwa T, Suzuki A, Sakakibara S, et al. Retrospective cohort chart review study of factors associated with the development of thrombocytopenia in adult Japanese patients who received intravenous linezolid therapy. Clin Ther. 2009;31(10):2126–2133.
  • Hanai Y, Matsuo K, Ogawa M, et al. A retrospective study of the risk factors for linezolid-induced thrombocytopenia and anemia. J Infect Chemother. 2016;22(8):536–542.
  • Tsuji Y, Mizoguchi A, Sadoh S, et al. Thrombocytopenia and anemia caused by a persistent high linezolid concentration in patients with renal dysfunction. J Infect Chemother. 2011;17(1):70–75.
  • Ott M, Mannchen JK, Jamshidi F, et al. Management of severe arterial hypertension associated with serotonin syndrome: a case report analysis based on systematic review techniques. Ther Adv Psychopharmaco. 2019;9:2045125318818814.
  • Mehlhorn AJ, Brown DA. Infectious diseases: safety concerns with fluoroquinolones. Ann Pharmacother. 2007;41(11):1859–1866.
  • Christ W. Central nervous system toxicity of quinolones: human and animal findings. J Antimicrob Chemother. 1990;26(suppl_B):219–225.
  • Schmuck G, Schürmann A, Schlüter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother. 1998;42(7):1831–1836.
  • Wilton L, Pearce G, Mann R. A comparison of ciprofloxacin, norfloxacin, ofloxacin, azithromycin and cefixime examined by observational cohort studies. Br J Clin Pharmacol. 1996;41(4):277–284.
  • Der Linden V, De Lei V. Achilles tendinitis associated with fluoroquinolones. Br J Clin Pharmacol. 1999;48(3):433–437.
  • Stephenson AL, Wu W, Cortes D, et al. Tendon injury and fluoroquinolone use: a systematic review. Drug Safe. 2013;36(9):709–721.
  • Alves C, Mendes D, Marques FB. Fluoroquinolones and the risk of tendon injury: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2019;75(10):1431–1443.
  • Lewis T, Cook J. Fluoroquinolones and tendinopathy: a guide for athletes and sports clinicians and a systematic review of the literature. J Athl Train. 2014;49(3):422–427.
  • Royer R, Pierfitte C, Netter P. Features of tendon disorders with fluoroquinolones. Therapie. 1994;49(1):75–76.
  • Lang TR, Cook J, Rio E, et al. What tendon pathology is seen on imaging in people who have taken fluoroquinolones? A systematic review. Fundam Clin Pharmacol. 2017;31(1):4–16.
  • Baik S, Lau J, Huser V, et al. Association between tendon ruptures and use of fluoroquinolone, and other oral antibiotics: a 10-year retrospective study of 1 million US senior medicare beneficiaries. BMJ open. 2020;10(12):e034844.
  • Eyer-Silva W, HdB PN, JFdC P, et al. Severe shoulder tendinopathy associated with levofloxacin. Braz J Infect Dis. 2012;16(4):393–395.
  • Saraya A, Yokokura M, Gonoi T, et al. Effects of fluoroquinolones on insulin secretion and β-cell ATP-sensitive K+ channels. Eur J Pharmacol. 2004;497(1):111–117.
  • Aspinall SL, Good CB, Jiang R, et al. Severe dysglycemia with the fluoroquinolones: a class effect? Clin Infect Dis. 2009;49(3):402–408.
  • Chou H-W, Wang J-L, Chang C-H, et al. Risk of severe dysglycemia among diabetic patients receiving levofloxacin, ciprofloxacin, or moxifloxacin in Taiwan. Clin Infect Dis. 2013;57(7):971–980.
  • Bansal N, Manocha D, Madhira B. Life-threatening metabolic coma caused by levofloxacin. Am J Ther. 2015;22(2):e48–e51.
  • Micheli L, Sbrilli M, Nencini C. Severe hypoglycemia associated with levofloxacin in Type 2 diabetic patients receiving polytherapy: two case reports. Int J Clin Pharmacol Ther. 2012;50(4):302–306.
  • Cho Y, Park HS. Association of oral ciprofloxacin, levofloxacin, ofloxacin and moxifloxacin with the risk of serious ventricular arrhythmia: a nationwide cohort study in Korea. BMJ open. 2018;8(9):e020974.
  • Liu X, Ma J, Huang L, et al. Fluoroquinolones increase the risk of serious arrhythmias: a systematic review and meta-analysis. Medicine (Baltimore). 2017;96(44):e8273.
  • Daya SK, Gowda RM, Khan IA. Ciprofloxacin-and hypocalcemia-induced torsade de pointes triggered by hemodialysis. Am J Ther. 2004;11(1):77–79.
  • Ibrahim M, Omar B. Ciprofloxacin-induced torsade de pointes. Am J Emerg Med. 2012;30(1):252. e5–. e9.
  • Tilton JJ, Sadr R, Groo VL. Concomitant use of levofloxacin and fluconazole leading to possible torsades de pointes. J Oncol Pharm Pract. 2019;25(8):2004–2006.
  • Zeuli JD, Wilson JW, Estes LL. Effect of combined fluoroquinolone and azole use on QT prolongation in hematology patients. Antimicrob Agents Chemother. 2013;57(3):1121–1127.
  • Heemskerk CP, Woldman E, Pereboom M, et al. Ciprofloxacin does not prolong the QTc interval: a clinical study in ICU patients and review of the literature. J Pharm Pharm Sci. 2017;20(1):360–364.
  • Torres A, Niederman MS, Chastre J, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur Respir J. 2017;50(3):1700582.
  • Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: role of the pharmacist in risk assessment, prevention and management. Can Pharm J. 2016;149(3):139–152.
  • Williamson DR, Lesur O, Tétrault J-P, et al. Drug-induced thrombocytopenia in the critically ill: a case-control study. Ann Pharmacother. 2014;48(6):697–704.
  • Claeys KC, Hopkins TL, Vega AD, et al. Fluoroquinolone restriction as an effective antimicrobial stewardship intervention. Curr Infect Dis Rep. 2018;20(5):1–7.
  • Heidary M, Khosravi AD, Khoshnood S, et al. Daptomycin. J Antimicrob Chemother. 2018;73(1):1–11.
  • D’Avolio A, Pensi D, Baietto L, et al. Daptomycin pharmacokinetics and pharmacodynamics in septic and critically ill patients. Drugs. 2016;76(12):1161–1174.
  • Gregoire N, Chauzy A, Buyck J, et al. Clinical pharmacokinetics of daptomycin. Clin Pharmacokinet. 2021;60(3):271–281.
  • Vilay AM, Grio M, Depestel DD, et al. Daptomycin pharmacokinetics in critically ill patients receiving continuous venovenous hemodialysis. Crit Care Med. 2011;39(1):19–25.
  • Falcone M, Russo A, Venditti M, et al. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2013;57(11):1568–1576.
  • Teng C, Baus C, Wilson JP, et al. Rhabdomyolysis associations with antibiotics: a pharmacovigilance study of the FDA Adverse Event Reporting System (FAERS). Int J Med Sci. 2019;16(11):1504–1509.
  • Dare RK, Tewell C, Harris B, et al. Effect of statin coadministration on the risk of daptomycin-associated myopathy. Clin Infect Dis. 2018;67(9):1356–1363.
  • Lehman B, Neuner EA, Heh V, et al. A retrospective multisite case-control series of concomitant use of daptomycin and statins and the effect on creatine phosphokinase. Open Forum Infect Dis. 2019;6(11):ofz444.
  • Arbeit RD, Maki D, Tally FP, et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis. 2004;38(12):1673–1681.
  • Falagas ME, Vouloumanou EK, Samonis G, et al. Fosfomycin. Clin Microbiol Rev. 2016;29(2):321–347.
  • Zhanel GG, Zhanel MA, Karlowsky JA. Intravenous fosfomycin: an assessment of its potential for use in the treatment of systemic infections in Canada. Can J Infect Dis Med Microbiol. 2018;2018:8912039.
  • Shorr AF, Pogue JM, Mohr JF. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections. Expert Rev Anti Infect Ther. 2017;15(10):935–945.
  • Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant gram-negative bacilli (endorsed by ESICM -European Society of Intensive Care Medicine). Clin Microbiol Infect. 2021;28(4):521–547.
  • Trinh TD, Smith JR, Rybak MJ. Parenteral fosfomycin for the treatment of multidrug resistant bacterial infections: the rise of the epoxide. Pharmacotherapy. 2019;39(11):1077–1094.
  • Parker S, Lipman J, Koulenti D, et al. What is the relevance of fosfomycin pharmacokinetics in the treatment of serious infections in critically ill patients? A systematic review. Int J Antimicrob Agents. 2013;42(4):289–293.
  • Sauermann R, Karch R, Langenberger H, et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother. 2005;49(11):4448–4454.
  • Leelawattanachai P, Wattanavijitkul T, Paiboonvong T, et al. Evaluation of intravenous fosfomycin disodium dosing regimens in critically ill patients for treatment of carbapenem-resistant enterobacterales infections using Monte Carlo simulation. Antibiotics (Basel). 2020;9(9). DOI:10.3390/antibiotics9090615.
  • Docobo-Pérez F, Drusano GL, Johnson A, et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob Agents Chemother. 2015;59(9):5602–5610.
  • Zheng G, Zhang J, Wang B, et al. Ceftazidime-avibactam in combination with in vitro non-susceptible antimicrobials versus Ceftazidime-avibactam in monotherapy in critically ill patients with carbapenem-resistant Klebsiella pneumoniae infection: a retrospective cohort study. Infect Dis Ther. 2021;10(3):1699–1713.
  • Al-Aloul M, Nazareth D, Walshaw M. The renoprotective effect of concomitant fosfomycin in the treatment of pulmonary exacerbations in cystic fibrosis. Clin Kidney J. 2019;12(5):652–658.
  • Pontikis K, Karaiskos I, Bastani S, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents. 2014;43(1):52–59.
  • Kanchanasurakit S, Santimaleeworagun W, McPherson CE, et al. Fosfomycin dosing regimens based on Monte Carlo simulation for treated carbapenem-resistant Enterobacteriaceae infection. Infect Chemother. 2020;52(4):516–529.
  • Sirijatuphat R, Thamlikitkul V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2014;58(9):5598–5601.
  • Michalopoulos AS, Livaditis IG, Gougoutas V. The revival of fosfomycin. Int J Infect Dis. 2011;15(11):e732–9.
  • Watson WA, Rhodes NJ, Echenique IA, et al. Resolution of Acyclovir-associated neurotoxicity with the aid of improved clearance estimates using a Bayesian approach: a case report and review of the literature. J Clin Pharm Ther. 2017;42(3):350–355.
  • Sallevelt BTGM, Smeijsters EH, Egberts TCG, et al. Acute renal and neurotoxicity due to weight-based dosing of intravenous acyclovir: how to dose in obese patients? Clin Infect Pract. 2020;7-8:100046.
  • Kenzaka T, Sugimoto K, Goda K, et al. Acute kidney injury and acyclovir-associated encephalopathy after administration of valacyclovir in an elderly person with normal renal function: a case report and literature review. Medicine (Baltimore). 2021;100(21):e26147.
  • Marks D, De La Paz A, Walston BJ. Acyclovir-induced neurotoxicity in an immunocompromised patient. SAGE Open Med Case Rep. 2020;8:2050313x20946518.
  • McGavin JK, Goa KL. Ganciclovir: an update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. Drugs. 2001;61(8):1153–1183.
  • Fitzmaurice MG, Srinivas P, Eckardt J, et al. 582. Safety and efficacy of high-dose ganciclovir versus standard dosing for cytomegalovirus viremia in solid organ transplant (SOT) recipients. Open Forum Infect Dis. 2020;7(Suppl 1):S356–S.
  • Abdul-Aziz MH, Alffenaar JC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med. 2020;46(6):1127–1153. .
  • Märtson AG, Edwina AE, Burgerhof JGM, et al. Ganciclovir therapeutic drug monitoring in transplant recipients. J Antimicrob Chemother. 2021;76(9):2356–2363.
  • Märtson A-G, Edwina AE, Kim HY, et al. Therapeutic drug monitoring of Ganciclovir: where are we? Ther Drug Monit. 2022;44(1):138–147.
  • Galar A, Valerio M, Catalán P, et al. Valganciclovir-ganciclovir use and systematic therapeutic drug monitoring. an invitation to antiviral stewardship. Antibiotics (Basel). 2021;10(1). DOI:10.3390/antibiotics10010077.
  • Ritchie BM, Barreto JN, Barreto EF, et al. Relationship of ganciclovir therapeutic drug monitoring with clinical efficacy and patient safety. Antimicrob Agents Chemother. 2019;63(3). DOI:10.1128/AAC.01855-18.
  • Sakamoto H, Hirano M, Nose K, et al. A case of severe ganciclovir-induced encephalopathy. Case Rep Neurol. 2013;5(3):183–186.
  • Payen D, de Pont AC, Sakr Y, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):1–7.
  • Tigabu BM, Davari M, Kebriaeezadeh A, et al. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: a systematic review. J Crit Care. 2018;48:153–159.
  • Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. NEJM. 2018;378(24):2263–2274.
  • Bashir MU, Tawil A, Mani VR, et al. Hidden obligatory fluid intake in critical care patients. J Intensive Care Med. 2017;32(3):223–227.
  • Wang N, Nguyen PK, Pham CU, et al. editors, Sodium content of intravenous antibiotic preparations. Open Forum Infect Dis. 2019;6(12):ofz508.
  • Bellomo R, Hegarty C, Story D, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–1572.
  • Pfortmueller CA, Uehlinger D, von Haehling S, et al. Serum chloride levels in critical illness—the hidden story. Intensive Care Med Exp. 2018;6(1):1–14.
  • Hawkins WA, Smith SE, Newsome AS, et al. Fluid stewardship during critical illness: a call to action. J Pharm Pract. 2020;33(6):863–873.
  • Hawkins WA, Dossett P, Smith S, et al. 1445: the pharmacist role in fluid stewardship in a medical ICU. Crit Care Med. 2020;48(1):699.
  • Haddad NA, Schreier DJ, Fugate JE, et al. Incidence and predictive factors associated with beta-lactam neurotoxicity in the critically ill: a Retrospective Cohort Study. Neurocrit Care. 2022. DOI:10.1007/s12028-022-01442-1.
  • Maguigan KL, Al-Shaer MH, Peloquin CA. Beta-lactams dosing in critically ill patients with gram-negative bacterial infections: a PK/PD Approach. Antibiotics (Basel). 2021;10(10). DOI:10.3390/antibiotics10101154
  • García-Villafranca A, Barrera-López L, Pose-Bar M, et al. De-novo non-convulsive status epilepticus in adult medical inpatients without known epilepsy: analysis of mortality related factors and literature review. PLoS One. 2021;16(10):e0258602.
  • Peerapornratana S, Manrique-Caballero CL, Gómez H, et al. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–1099.
  • Carlier M, Carrette S, Roberts JA, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care. 2013;17(3):R84.
  • Williams P, Beall G, Cotta MO, et al. Antimicrobial dosing in critical care: a pragmatic adult dosing nomogram. Int J Antimicrob Agents. 2020;55(2):105837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.