505
Views
1
CrossRef citations to date
0
Altmetric
Review

Clinical pharmacology of siRNA therapeutics: current status and future prospects

, , , , , , , & show all
Pages 1327-1341 | Received 28 Feb 2022, Accepted 11 Oct 2022, Published online: 24 Oct 2022

References

  • Zamore PD. RNA interference: big applause for silencing in Stockholm. Cell. 2006;127(6):1083–1086.
  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343–349.
  • Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010;28(11):570–579.
  • Agrawal N, Dasaradhi P, Mohmmed A, et al. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003;67(4):657–685.
  • Lin Y-X, Wang Y, Blake S, et al. RNA nanotechnology-mediated cancer immunotherapy. Theranostics. 2020;10(1):281.
  • Snead NM, Wu X, Li A, et al. Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Res. 2013;41(12):6209–6221.
  • Wood H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol. 2018;14(10):570.
  • Scott LJ. Givosiran: first approval. Drugs. 2020;80(3):335–339.
  • Zhang MM, Bahal R, Rasmussen TP, et al. The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol. 2021;189:114432.
  • Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14(12):843–856.
  • Wartiovaara J, Öfverstedt L-G, Khoshnoodi J, et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest. 2004;114(10):1475–1483.
  • Bartlett DW, Davis ME. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA‐mediated gene silencing. Biotechnol Bioeng. 2007;97(4):909–921.
  • Gao S, Dagnaes-Hansen F, Nielsen EJB, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther. 2009;17(7):1225–1233.
  • Kim HJ, Kim A, Miyata K, et al. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.
  • Shegokar R, Al Shaal L, Mishra P. SiRNA delivery: challenges and role of carrier systems. Die Pharmazie- Int J Pharm Sci. 2011;66(5):313–318.
  • Tai W. Current aspects of siRNA bioconjugate for in vitro and in vivo delivery. Molecules. 2019;24(12):2211.
  • Watts JK, Deleavey GF, Damha MJ. Chemically modified siRNA: tools and applications. Drug Discov Today. 2008;13(19–20):842–855.
  • Chiu Y-L, Rana TM. siRNA function in RNAi: a chemical modification analysis. Rna. 2003;9(9):1034–1048.
  • Yu Z, Zhang X, Pei X, et al. Antibody-siRNA conjugates (ARCs) using multifunctional peptide as a tumor enzyme cleavable linker mediated effective intracellular delivery of siRNA. Int J Pharm. 2021;606:120940.
  • Matsubara M, Honda K, Ozaki K, et al. Synthesis of siRNAs incorporated with cationic peptides R8G7 and R8A7 and the effect of the modifications on siRNA properties. RSC Adv. 2020;10(57):34815–34824.
  • Sivakumar P, Kim S, Kang HC, et al. Targeted siRNA delivery using aptamer‐siRNA chimeras and aptamer‐conjugated nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(3):e1543.
  • Aviñó A, Ocampo SM, Lucas R, et al. Synthesis and in vitro inhibition properties of siRNA conjugates carrying glucose and galactose with different presentations. Mol Divers. 2011;15(3):751–757.
  • Biscans A, Caiazzi J, McHugh N, et al. Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles. Mol Ther. 2021;29(4):1382–1394.
  • Falato L, Gestin M, Langel Ü. Cell-penetrating peptides delivering siRNAs: an overview. Design Delivery SiRNA Ther. 2021;2283:329–352.
  • Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–116.
  • Lobovkina T, Jacobson GB, Gonzalez-Gonzalez E, et al. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS nano. 2011;5(12):9977–9983.
  • Ceylan S, Bahadori F, Akbas F. Engineering of siRNA loaded PLGA Nano-Particles for highly efficient silencing of GPR87 gene as a target for pancreatic cancer treatment. Pharm Dev Technol. 2020;25(7):855–864.
  • Saeed RM, Abdullah M, Ahram M, et al. Novel ellipsoid chitosan-phthalate lecithin nanoparticles for siRNA delivery. Front Bioeng Biotechnol. 2021;9:589.
  • Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23(4):73–82.
  • Okamura K, Ishizuka A, Siomi H, et al. Distinct roles for argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 2004;18(14):1655–1666.
  • Alshaer W, Zureigat H, Al Karaki A, et al. siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol. 2021;905:174178.
  • Saw PE, Song E-W. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63(4):485–500.
  • Neumeier J, Meister G. SiRNA specificity: rNAi mechanisms and strategies to reduce off-target effects. Front Plant Sci. 2021;11(526455):2196.
  • Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet. 2015;16(9):543–552.
  • Dana H, Chalbatani GM, Mahmoodzadeh H, et al. Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci IJBS. 2017;13(2):48.
  • Subhan MA, Torchilin V. siRNA based drug design, quality, delivery and clinical translation. Nanomedicine. 2020;29:102239.
  • Baas J, Senninger N, Elser H. The reticuloendothelial system. An overview of function, pathology and recent methods of measurement. Z Gastroenterol. 1994;32(2):117–123.
  • Caillaud M, El Madani M, Massaad-Massade L. Small interfering RNA from the lab discovery to patients’ recovery. J Control Release. 2020;321:616–628.
  • Juliano R, Bauman J, Kang H, et al. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm. 2009;6(3):686–695.
  • S-D L, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochimi Biophys Acta (BBA) Biomembr. 2009;1788(10):2259–2266.
  • Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25(11):2692.
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577.
  • Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci. 2021;274:119337.
  • Van de Water FM, Boerman OC, Wouterse AC, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos. 2006;34(8):1393–1397.
  • Huang Y, Hong J, Zheng S, et al. Elimination pathways of systemically delivered siRNA. Mol Ther. 2011;19(2):381–385.
  • Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(8):1183–1189.
  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–2126.
  • Robbins M, Judge A, MacLachlan I. siRNA and innate immunity. Oligonucleotides. 2009;19(2):89–102.
  • Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 2003;31(11):2705–2716.
  • Ku SH, Jo SD, Lee YK, et al. Chemical and structural modifications of RNAi therapeutics. Adv Drug Deliv Rev. 2016;104:16–28.
  • Deleavey GF, Watts JK, Damha MJ. Chemical modification of siRNA. Curr Protoc Nucleic Acid Chem. 2009;39(1):16.3. 1–16.3. 22.
  • Sanghvi YS. A status update of modified oligonucleotides for chemotherapeutics applications. Current protocols in nucleic acid chemistry. Curr Protoc Nucleic Acid Chem. 2011;46(1):4.1. 1–4.1. 22.
  • Morrissey DV, Blanchard K, Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology. 2005;41(6):1349–1356.
  • Wang H, Ghosh A, Baigude H, et al. Therapeutic gene silencing delivered by a chemically modified small interfering RNA against mutant SOD1 slows amyotrophic lateral sclerosis progression. J Biol Chem. 2008;283(23):15845–15852.
  • Sugo T, Terada M, Oikawa T, et al. Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles. J Control Release. 2016;237:1–13.
  • Kortylewski M, Swiderski P, Herrmann A, et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol. 2009;27(10):925–932.
  • Larsen MT, Kuhlmann M, Hvam ML, et al. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4(1):1–12.
  • Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. 2007;25(10):1149–1157.
  • Green M, Ishino M, Loewenstein PM. Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell. 1989;58(1):215–223.
  • Pooga M, Hällbrink M, Zorko M, et al. Cell penetration by transportan. FASEB J. 1998;12(1):67–77.
  • Dohmen C, Fröhlich T, Lächelt U, et al. Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol Ther Nucleic Acids. 2012;1:e7.
  • Nair JK, Willoughby JL, Chan A, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–16961.
  • Iversen F, Yang C, Dagnæs-Hansen F, et al. Optimized siRNA-PEG conjugates for extended blood circulation and reduced urine excretion in mice. Theranostics. 2013;3(3):201.
  • Rozema DB, Lewis DL, Wakefield DH, et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Nat Acad Sci. 2007;104(32):12982–12987.
  • Lee C-W, SC-S H, Yen F-L, et al. Magnolol nanoparticles exhibit improved water solubility and suppress TNF-α-induced VCAM-1 expression in endothelial cells. J Biomed Nanotechnol. 2017;13(3):255–268.
  • Haggag YA, Yasser M, Tambuwala MM, et al. Repurposing of Guanabenz acetate by encapsulation into long-circulating nanopolymersomes for treatment of triple-negative breast cancer. Int J Pharm. 2021;600:120532.
  • Tchoryk A, Taresco V, Argent RH, et al. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 2019;30(5):1371–1384.
  • Abdelkader DH, Abosalha AK, Khattab MA, et al. A novel sustained anti-inflammatory effect of atorvastatin—calcium PLGA nanoparticles: in vitro optimization and in vivo. Pharmaceutics. 2021;13(10):1658.
  • Zewail MB, El-Gizawy SA, Osman MA, et al. Preparation and In vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of candesartan cilexetil and hydrochlorothiazide. J Drug Delivery Sci Technol. 2021;61:102320.
  • Gunasekaran T, Haile T, Nigusse T, et al. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Tropical Biomedicine. 2014;4:S1–S7.
  • Haggag Y, Abu Ras B, El-Tanani Y, et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin Drug Deliv. 2020;17(11):1655–1669.
  • Lü J-M, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–341.
  • Pantazis P, Dimas K, Wyche JH, et al. Nanoparticles in Biology and Medicine. In: Preparation of siRNA-encapsulated PLGA nanoparticles for sustained release of siRNA and evaluation of encapsulation efficiency. New York City, U.S: Springer, 2012. p. 311–319.
  • Risnayanti C, Jang Y-S, Lee J, et al. PLGA nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer. Sci Rep. 2018;8(1):1–12.
  • Zhang H-L, S-h W, Tao Y, et al. Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater. 2010;2010:1–5.
  • Mohammed MA, Syeda J, Wasan KM, et al. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53.
  • Lin Q, Jiang G, Tong K. Dendrimers in drug-delivery applications. Des Monomers Polym. 2010;13(4):301–324.
  • Biswas S, Torchilin VP. Dendrimers for siRNA delivery. Pharmaceuticals. 2013;6(2):161–183.
  • Chen J, Ellert-Miklaszewska A, Garofalo S, et al. Synthesis and use of an amphiphilic dendrimer for siRNA delivery into primary immune cells. Nat Protoc. 2021;16(1):327–351.
  • Kwak SY, Lee S, Han HD, et al. PLGA nanoparticles codelivering siRNAs against programmed cell death protein-1 and its ligand gene for suppression of colon tumor growth. Mol Pharm. 2019;16(12):4940–4953.
  • Van Woensel M, Wauthoz N, Rosière R, et al. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release. 2016;227:71–81.
  • Jain R, Dandekar P, Loretz B, et al. Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages. MedChemComm. 2015;6(4):691–701.
  • Dong Y, Yu T, Ding L, et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J Am Chem Soc. 2018;140(47):16264–16274.
  • Nisini R, Poerio N, Mariotti S, et al. The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol. 2018;9:155.
  • Olusanya TO, Haj Ahmad RR, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.
  • Ge X, Wei M, He S, et al. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019;11(2):55.
  • Obeid MA, Alyamani H, Amawi H, et al. siRNA delivery to melanoma cells with cationic niosomes. Melanoma: Springer; 2021. p. 621–634.
  • Guo S, Li K, Hu B, et al. Membrane‐destabilizing ionizable lipid empowered imaging‐guided siRNA delivery and cancer treatment. In: Exploration. New Jersey, U.S: Wiley Online Library; 2021. p. 35–49.
  • Ud Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291.
  • Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982.
  • Bedi D, Musacchio T, Fagbohun OA, et al. Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes. Nanomedicine. 2011;7(3):315–323.
  • Song L, Fan Z, Jun N, et al. Tumor specific delivery and therapy mediate by integrin β6-target immunoliposomes for β6-siRNA in colon carcinoma. Oncotarget. 2016;7(51):85163.
  • Hanafy MS, Hufnagel S, Trementozzi AN, et al. PD-1 siRNA-encapsulated solid lipid nanoparticles downregulate PD-1 expression by macrophages and inhibit tumor growth. AAPS PharmSciTech. 2021;22(2):1–8.
  • Moghimi SM, Symonds P, Murray JC, et al. A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11(6):990–995.
  • Ballarin-Gonzalez B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv Drug Deliv Rev. 2012;64(15):1717–1729.
  • Zheng M, Jiang T, Yang W, et al. The siRNAsome: a cation‐free and versatile nanostructure for siRNA and drug co‐delivery. Angew Chem. 2019;58(15):4938–4942.
  • Jensen SA, Day ES, Ko CH, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med. 2013;5(209):209ra152–209ra152.
  • Jiang T, Qiao Y, Ruan W, et al. Cation‐free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy. Adv Mater. 2021;33(45):2104779.
  • Kumthekar P, Ko CH, Paunesku T, et al. A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med. 2021;13(584):eabb3945.
  • Luo J, Höhn M, Reinhard S, et al. IL4‐receptor‐targeted dual antitumoral apoptotic peptide—siRNA conjugate lipoplexes. Adv Funct Mater. 2019;29(25):1900697.
  • Khanali J, Azangou-khyavy M, Asaadi Y, et al. Nucleic-Acid Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol. 2021;12:758948.
  • Liu X, Rocchi P, Fq Q, et al. PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem. 2009;4(8):1302–1310.
  • Khabazian E, Vakhshiteh F, Norouzi P, et al. Cationic liposome decorated with cyclic RGD peptide for targeted delivery of anti-STAT3 siRNA to melanoma cancer cells. J Drug Target. 2022;30:522–533.
  • Oner E, Kotmakci M, Baird A-M, et al. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small‐molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. J Nanobiotechnology. 2021;19(1):1–20.
  • Gonzalez-Duarte A, Adams D, Tournev I, et al. HELIOS-A: results from the phase 3 study of vutrisiran in patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy. J Am Coll Cardiol. 2022;79(9_Supplement):302.
  • Srivastava A, Rangarajan S, Kavakli K, et al. Fitusiran, an investigational siRNA therapeutic targeting antithrombin for the treatment of hemophilia: first results from a phase 3 study to evaluate efficacy and safety in people with hemophilia a or B without inhibitors (ATLAS-A/B). Blood. 2021;138:LBA–3.
  • Hayreh SS, MB Z. Non-arteritic anterior ischemic optic neuropathy: role of systemic corticosteroid therapy. Graef‘s Archive for clinical and experimental opthalmology. JGsafc, ophthalmology e. 2008;246(7):1029–1046.
  • Ruz V, Gonzalez V, Bleau A-M, et al. Clinical results of tivanisiran, a siRNA for the treatment of dry eye disease. Investig. Ophthalmol. Vis. Sci. 2019;60(9):6738.
  • Waddington-Cruz M, Schmidt H, Botteman MF, et al. Epidemiological and clinical characteristics of symptomatic hereditary transthyretin amyloid polyneuropathy: a global case series. Orphanet J Rare Dis. 2019;14(1):1–7.
  • Vita G, Vita GL, Musumeci O, et al. Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle. Neurol Sci. 2019;40(4):671–681.
  • Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve. 2007;36(4):411–423.
  • Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126(10):1286–1300.
  • Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.
  • Kulkarni JA, Witzigmann D, Leung J, et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale. 2019;11(18):9023–9031.
  • Wahlich J, Desai A, Greco F, et al. Nanomedicines for the delivery of biologics. Basel, Switzerland: Multidisciplinary Digital Publishing Institute; 2019.
  • Setten RL, Rossi JJ, S-p H. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–446.
  • Urits I, Swanson D, Swett MC, et al. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther. 2020;9(2):301–315.
  • Weng Y, Xiao H, Zhang J, et al. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37(5):801–825.
  • ONPATTRO full prescribing information by FDA. 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210922s000lbl.pdf
  • Wang B, Rudnick S, Cengia B, et al. Acute hepatic porphyrias: review and recent progress. Hepatol Commun. 2019;3(2):193–206.
  • Bissell DM. The porphyrias. Amsterdam, Netherlands: Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease; 2015.
  • Bissell DM, Lai JC, Meister RK, et al. Role of delta-aminolevulinic acid in the symptoms of acute porphyria. Am J Med. 2015;128(3):313–317.
  • Syed YY. Givosiran: a review in acute hepatic porphyria. Drugs. 2021;81(7):841–848.
  • Balwani M, Sardh E, Ventura P, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med. 2020;382(24):2289–2301.
  • GIVLAARI full prescribing informations by FDA 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/0212194s000lbl.pdf
  • Chan A, Liebow A, Yasuda M, et al. Preclinical development of a subcutaneous ALAS1 RNAi therapeutic for treatment of hepatic porphyrias using circulating RNA quantification. Mol Ther Nucleic Acids. 2015;4:e263.
  • Salido EC, Li XM, Lu Y, et al. Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Nat Acad Sci. 2006;103(48):18249–18254.
  • Danpure C, Jennings P. Peroxisomal alanine: glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986;201(1):20–34.
  • Lieske JC, Monico CG, Holmes WS, et al. International registry for primary hyperoxaluria. Am J Nephrol. 2005;25(3):290–296.
  • Mandrile G, Van Woerden CS, Berchialla P, et al. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 2014;86(6):1197–1204.
  • Leflot M, Krzesinski J-M, Collard L, et al. Type 1 primary hyperoxaluria: from childhood to adult, how to manage adequately medical therapy compliance? Nephrol Ther. 2017;14(3):148–152.
  • Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369(7):649–658.
  • Hoppe B. Evidence of true genotype–phenotype correlation in primary hyperoxaluria type 1. Kidney Int. 2010;77(5):383–385.
  • Marangella M, Petrarulo M, Vitale C, et al. Plasma and urine glycolate assays for differentiating the hyperoxaluria syndromes. J Urol. 1992;148(3):986–989.
  • Petrarulo M, Vitale C, Facchini P, et al. Biochemical approach to diagnosis and differentiation of primary hyperoxalurias: an update. J Nephrol. 1998;11:23–28.
  • OXLUMO full prescribing informations by FDA 2020. (https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214103lbl.pdf)
  • Garrelfs SF, Frishberg Y, Hulton SA, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384(13):1216–1226.
  • Sheridan C. PCSK9-gene-silencing, cholesterol-lowering drug impresses. Nat Biotechnol. 2019;37(12):1385–1388.
  • Dyrbuś K, Gąsior M, Penson P, et al. Inclisiran—New hope in the management of lipid disorders? J Clin Lipidol. 2020;14(1):16–27.
  • Khvorova A. Oligonucleotide therapeutics—a new class of cholesterol-lowering drugs. N Engl J Med. 2017;376(1):4–7.
  • Fitzgerald K, White S, Borodovsky A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51.
  • LEQVIO® (inclisiran) full prescribing information by FDA 2021 https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214012lbl.pdf
  • Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE. RNA interference for glioblastoma therapy: innovation ladder from the bench to clinical trials. Life Sci. 2017;188:26–36.
  • Zahir-Jouzdani F, Mottaghitalab F, Dinarvand M, et al. siRNA delivery for treatment of degenerative diseases, new hopes and challenges. J Drug Delivery Sci Technol. 2018;45:428–441.
  • Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021;27(4):717–726.
  • Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature. 2021;593(7857):130–135.
  • Idris A, Davis A, Supramaniam A, et al. A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Mol Ther. 2021;29(7):2219–2226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.