212
Views
0
CrossRef citations to date
0
Altmetric
Systematic Review

Parametric population pharmacokinetics of isoniazid: a systematic review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 467-489 | Received 16 Sep 2022, Accepted 24 Mar 2023, Published online: 03 Apr 2023

References

  • World Health Organization. Global tuberculosis report 2021. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021.
  • Li G, Zhang J, Jiang Y, et al. Cross-resistance of isoniazid, para-aminosalicylic acid and pasiniazid against isoniazid-resistant Mycobacterium tuberculosis isolates in China. J Glob Antimicrob Resist. 2020;20:275–281.
  • Genestet C, Ader F, Pichat C, et al. Assessing the combined antibacterial effect of isoniazid and rifampin on four mycobacterium tuberculosis strains using in vitro experiments and response-surface modeling. Antimicrob Agents Chemother. 2018;62(1): undefined. DOI:10.1128/AAC.01413-17.
  • Erwin ER, Addison AP, John SF, et al. Pharmacokinetics of isoniazid: the good, the bad, and the alternatives. Tuberculosis. 2019;null:S66–70. .
  • Wang P, Pradhan K, Zhong X, et al. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B. 2016;6(5):384–392. DOI:10.1016/j.apsb.2016.07.014
  • Fernandes GFDS, Salgado HRN, Santos JLD, et al. Isoniazid: a review of characteristics, properties and analytical methods. Crit Rev Anal Chem. 2017;47(4):298–308. DOI:10.1080/10408347.2017.1281098
  • Kwara A, Enimil A, Gillani FS, et al. Pharmacokinetics of first-line antituberculosis drugs using WHO revised dosage in children with tuberculosis with and without HIV coinfection. J Pediatric Infect Dis Soc. 2016;5(4):356–365. DOI:10.1093/jpids/piv035
  • Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–1473. DOI:10.1093/infdis/jit352
  • Azuma J, Ohno M, Kubota R, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–1101. DOI:10.1007/s00228-012-1429-9
  • Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–854.
  • Mota L, Al-Efraij K, Campbell J, et al. Therapeutic drug monitoring in anti-tuberculosis treatment: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2016;20(6):819–826. DOI:10.5588/ijtld.15.0803
  • Devaleenal DB, Ramachandran G, Swaminathan S. The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol. 2017;10(1):47–58.
  • Sturkenboom Marieke GG, Märtson AG, Svensson EM, et al. Population pharmacokinetics and bayesian dose adjustment to advance TDM of Anti-TB Drugs. Clin Pharmacokinet. 2021;60(6):685–710. DOI:10.1007/s40262-021-00997-0
  • Ilaria M, Andrea C, Stefano B. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization? Expert Opin Drug Metab Toxicol. 2018;14(1):59–82.
  • Li ZR, Wang CY, Zhu X, et al. Population pharmacokinetics of levetiracetam: a systematic review. Clin Pharmacokinet. 2021;60(3):305–318. DOI:10.1007/s40262-020-00963-2
  • Ludden TM. Population pharmacokinetics. J Clin Pharmacol. 1988 Dec;28(12):1059–1063. DOI:10.1002/j.1552-4604.1988.tb05714.x.
  • Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349(jan02 1):g7647. DOI:10.1136/bmj.g7647
  • Jelliffe R, Schumitzky A, Van Guilder M. Population pharmacokinetics/pharmacodynamics modeling: parametric and nonparametric methods. Ther Drug Monit. 2015;22(3):354–365.
  • Goutelle S, Woillard JB, Buclin T, et al. Parametric and nonparametric methods in population pharmacokinetics: experts’ discussion on use, strengths, and limitations. J Clin Pharmacol. 2022;62(2):158–170. DOI:10.1002/jcph.1993
  • Jamsen KM, McLeay SC, Barras MA, et al. Reporting a population pharmacokinetic–Pharmacodynamic Study: a Journal’s Perspective. Clin Pharmacokinet. 2014;53(2):111–122. DOI:10.1007/s40262-013-0114-1
  • Kanji S, Hayes M, Ling A, et al. Reporting guidelines for clinical pharmacokinetic studies: the ClinPK statement. Clin Pharmacokinet. 2015;54(7):783–795. DOI:10.1007/s40262-015-0236-8
  • Duffull SB, Wright DF. What do we learn from repeated population analyses? Br J Clin Pharmacol. 2015;79(1):40–47.
  • Li ZR, Wang CY, Zhu X, et al. Population pharmacokinetics of levetiracetam: a systematic review. Clin Pharmacokinet. 2021;60(3):305–318.
  • Chen YT, Wang CY, Yin YW, et al. Population pharmacokinetics of oxcarbazepine: a systematic review. Expert Rev Clin Pharmacol. 2021;14(7):853–864. DOI:10.1080/17512433.2021.1917377
  • US Department of Health and Human Services. Statistical approaches to establishing bioequivalence. Rockville: US FDA, US Center for Drug Evaluation and Research; 2001.
  • Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses-a clinical viewpoint. Br J Clin Pharmacol. 2011;71(6):807–814.
  • Kiser JJ, Zhu R, D’argenio DZ, et al. Isoniazid pharmacokinetics, pharmacodynamics, and dosing in South African infants. Ther Drug Monit. 2012;34(4):446–451. DOI:10.1097/FTD.0b013e31825c4bc3
  • Rockwood N, Pasipanodya Jotam G, Denti P, et al. Concentration-dependent antagonism and culture conversion in pulmonary tuberculosis. Clin Infect Dis. 2017;64(10):1350–1359. DOI:10.1093/cid/cix158
  • Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother. 2005;49(5):1733–1738. DOI:10.1128/AAC.49.5.1733-1738.2005
  • Wilkins JJ, Langdon G, McIlleron H, et al. Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. Br J Clin Pharmacol. 2011;72:51–62.
  • Zhu R, Kiser JJ, Seifart HI, et al. The pharmacogenetics of NAT2 enzyme maturation in perinatally HIV exposed infants receiving isoniazid. J Clin Pharmacol. 2012;52(4):511–519. DOI:10.1177/0091270011402826
  • Zvada SP, Denti P, Donald PR, et al. Population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children with tuberculosis: in silico evaluation of currently recommended doses. J Antimicrob Chemother. 2014;69(5):1339–1349. DOI:10.1093/jac/dkt524
  • Seng KY, Hee KH, Soon GH, et al. Population pharmacokinetic analysis of isoniazid, acetylisoniazid, and isonicotinic acid in healthy volunteers. Antimicrob Agents Chemother. 2015;59(11):6791–6799. DOI:10.1128/AAC.01244-15
  • Denti P, Jeremiah K, Chigutsa E, et al. Pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in newly diagnosed pulmonary tb patients in tanzania. PLoS ONE. 2015;10(10):e0141002. DOI:10.1371/journal.pone.0141002
  • Rockwood N, Meintjes G, Chirehwa M, et al. HIV-1 coinfection does not reduce exposure to rifampin, isoniazid, and pyrazinamide in South African tuberculosis outpatients. Antimicrob Agents Chemother. 2016;60(10):6050–6059. DOI:10.1128/AAC.00480-16
  • Vinnard C, Ravimohan S, Tamuhla N, et al. Isoniazid clearance is impaired among human immunodeficiency virus/tuberculosis patients with high levels of immune activation. Br J Clin Pharmacol. 2017;83(4):801–811. DOI:10.1111/bcp.13172
  • Aruldhas BW, Hoglund RM, Ranjalkar J, et al. Optimization of dosing regimens of isoniazid and rifampicin in children with tuberculosis in India. Br J Clin Pharmacol. 2019;85(3):644–654. DOI:10.1111/bcp.13846
  • Chirehwa MT, McIlleron H, Wiesner L, et al. Effect of efavirenz-based antiretroviral therapy and high-dose rifampicin on the pharmacokinetics of isoniazid and acetyl-isoniazid. J Antimicrob Chemother. 2019;74(1):139–148. DOI:10.1093/jac/dky378
  • Guiastrennec B, Ramachandran G, Karlsson MO, et al. Suboptimal antituberculosis drug concentrations and outcomes in small and HIV-Coinfected Children in India: recommendations for Dose Modifications. Clin Pharmacol Ther. 2018;104(4):733–741. DOI:10.1002/cpt.987
  • Horita Y, Alsultan A, Kwara A, et al. Evaluation of the adequacy of WHO revised dosages of the first-line antituberculosis drugs in children with tuberculosis using population pharmacokinetic modeling and simulations. Antimicrob Agents Chemother. 2018;62(9): undefined. DOI:10.1128/AAC.00008-18.
  • Naidoo A, Chirehwa M, Ramsuran V, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):225–240. DOI:10.2217/pgs-2018-0166
  • Sekaggya WC, Chirehwa M, Musaazi J, et al. Low antituberculosis drug concentrations in HIV-Tuberculosis-coinfected adults with low body weight: is it time to update dosing guidelines? Antimicrob Agents Chemother. 2019;63(6): undefined. DOI:10.1128/AAC.02174-18.
  • Abdelwahab MT, Leisegang R, Dooley KE, et al. Population pharmacokinetics of isoniazid, pyrazinamide, and ethambutol in pregnant South African Women with Tuberculosis and HIV. Antimicrob Agents Chemother. 2020;64(3): undefined. DOI:10.1128/AAC.01978-19.
  • Jing W, Zong Z, Tang B, et al. Population pharmacokinetic analysis of isoniazid among pulmonary tuberculosis patients from China. Antimicrob Agents Chemother. 2020;64:e01736–19.
  • Huerta-García AP, Medellín-Garibay SE, Ortiz-Álvarez A, et al. Population pharmacokinetics of isoniazid and dose recommendations in Mexican patients with tuberculosis. Int J Clin Pharm. 2020;42:1217–1226.
  • Kloprogge F, Mwandumba HC, Banda G, et al. Longitudinal pharmacokinetic/pharmacodynamic biomarkers correlate with treatment outcome in drug-sensitive pulmonary tuberculosis: a population pharmacokinetic-pharmacodynamic analysis. Open Forum Infect Dis. 2020;7:ofaa218.
  • Panjasawatwong N, Wattanakul T, Hoglund RM, et al. Population pharmacokinetic properties of antituberculosis drugs in Vietnamese children with tuberculous meningitis. Antimicrob Agents Chemother. 2020;65(1): undefined. DOI:10.1128/AAC.00487-20.
  • Sundell J, Bienvenu E, Janzén D, et al. Model -based assessment of variability in isoniazid pharmacokinetics and metabolism in patients co-infected with tuberculosis and HIV: implications for a novel dosing Strategy. Clin Pharmacol Ther. 2020;108:73–80.
  • Gao Y, Davies FL, Ren W, et al. Drug exposure of first-line anti-tuberculosis drugs in China: a prospective pharmacological cohort study. Br J Clin Pharmacol. 2021;87(3):1347–1358. DOI:10.1111/bcp.14522
  • Rao PS, Moore CC, Mbonde AA, et al. Population pharmacokinetics and significant under-dosing of anti-tuberculosis medications in people with HIV and Critical Illness. Antibiotics (Basel). 2021;10(6):739. undefined. DOI:10.3390/antibiotics10060739
  • Yong-Soon C, Tae Won J, Hyo-Jung K, et al. Isoniazid population pharmacokinetics and dose recommendation for Korean Patients with Tuberculosis Based on Target Attainment Analysis. J Clin Pharmacol. 2021;61(12):1567–1578. DOI:10.1002/jcph.1931
  • Béranger A, Bekker A, Solans BP, et al. Influence of NAT2 genotype and maturation on isoniazid exposure in low-birth-weight and preterm infants with or without Human Immunodeficiency Virus (HIV) Exposure. Clin Infect Dis. 2022;75(6):1037–1045. DOI:10.1093/cid/ciac001
  • Chen B, Shi HQ, Feng MR, et al. Population pharmacokinetics and pharmacodynamics of isoniazid and its metabolite acetylisoniazid in Chinese Population. Front Pharmacol. 2022;13:932686.
  • García-Martín E. Interethnic and intraethnic variability of NAT2 single nucleotide polymorphisms. Curr Drug Metab. 2008;9:487–497.
  • Lee MC, Fujita Y, Muraki S, et al. Isoniazid level and flu-like symptoms during rifapentine-based tuberculosis preventive therapy: a population pharmacokinetic analysis. Br J Clin Pharmacol. 2023;89:714–726.
  • Soedarsono S, Jayanti RP, Mertaniasih NM, et al. Development of population pharmacokinetics model of isoniazid in Indonesian patients with tuberculosis. Int J Infect Dis. 2022;117:8–14.
  • Jarrett RT, van der Heijden Y, Shotwell MS, et al. High isoniazid exposures when administered with rifapentine once weekly for latent tuberculosis in individuals with Human Immunodeficiency Virus. Antimicrob Agents Chemother. 2023;9:e0129722.
  • Fretland AJ, Leff MA, Doll MA, et al. Functional characterization of human N-acetyltransferase 2 (NAT2) single nucleotide polymorphisms. Pharmacogenetics. 2001;11:207–215.
  • Hein DW, Doll MA. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics. 2012;13:31–41.
  • Salazar-González R, Gómez R, Romano-Moreno S, et al. Expression of NAT2 in immune system cells and the relation of NAT2 gene polymorphisms in the anti-tuberculosis therapy in Mexican mestizo population. Mol Biol Rep. 2014;41:7833–7843.
  • Grant DM, Goodfellow GH, Sugamori K, et al. Pharmacogenetics of the human arylamine N-acetyltransferases. Pharmacology. 2000;61:204–211.
  • Loktionov A, Moore W, Spencer SP, et al. Differences in N-acetylation genotypes between Caucasians and black South Africans: implications for cancer prevention. Cancer Detect Prev. 2002;26:15–22.
  • Sabbagh A, Langaney A, Darlu P, et al. Worldwide distribution of NAT2 diversity: implications for NAT2 evolutionary history. BMC Genet. 2008;9:21.
  • Sabbagh A, Darlu P, Crouau-Roy B, et al. Arylamine N-acetyltransferase 2 (NAT2) genetic diversity and traditional subsistence: a worldwide population survey. PLoS ONE. 2011;6:e18507.
  • Ramachandran G, Hemanth Kumar AK, Bhavani PK, et al. Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-tuberculosis drugs in children. Int J Tuberc Lung Dis. 2013;17:800–806.
  • Anderson BJ, Holford Nick HG. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24:25–36.
  • Anderson GD. Gender differences in pharmacological response. Int Rev Neurobiol. 2008;83:1–10.
  • McIlleron H, Rustomjee R, Vahedi M, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56:3232–3238.
  • Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al. Malabsorption of rifampin and isoniazid in HIV-infected patients with and without tuberculosis. Clin Infect Dis. 2004;38:280–283.
  • Breen RA, Miller RF, Gorsuch T, et al. Adverse events and treatment interruption in tuberculosis patients with and without HIV co-infection. Thorax. 2006;61:791–794.
  • Yee D, Valiquette C, Pelletier M, et al. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med. 2003;167:1472–1477.
  • Ungo JR, Jones D, Ashkin D, et al. Antituberculosis drug-induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. Am J Respir Crit Care Med. 1998;157:1871–1876.
  • Small PM, Schecter GF, Goodman PC, et al. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. N Engl J Med. 1991;324:289–294.
  • Hassan HM, Guo H, Yousef BA, et al. Role of inflammatory and oxidative stress, cytochrome P450 2E1, and Bile Acid Disturbance in rat liver injury induced by isoniazid and lipopolysaccharide Cotreatment. Antimicrob Agents Chemother. 2016;60:5285–5293.
  • Tuloup V, France M, Garreau R, et al. Model-based comparative analysis of rifampicin and rifabutin drug-drug interaction profile. Antimicrob Agents Chemother. 2021 Aug;65(9):e0104321.
  • Standing JF. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br J Clin Pharmacol. 2017 Feb;83(2):247–254.
  • Mehrotra N, Bhattaram A, Earp JC, et al. Role of quantitative clinical pharmacology in pediatric approval and labeling. Drug Metab Dispos. 2016 Jul;4(7):924–933.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.