234
Views
1
CrossRef citations to date
0
Altmetric
Review

Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: recent advances and future outlooks

, , , , &
Pages 715-726 | Received 23 Mar 2023, Accepted 17 Jul 2023, Published online: 21 Jul 2023

References

  • Cystic Fibrosis Trust. UK cystic fibrosis registry 2020 annual data report 2021. available from: 2020 annual data report - version 4.Pdf (cysticfibrosis.Org.uk).
  • Poulter C, Doull I, Bhatt JM. Epidemiology,genetics,pathophysiology and prognosis of CF. In: Eber E, Midulla F, editors. ERS Handbook of Paediatric Respiratory Medicine. UK: European Respiratory Society; 2021. p. 435–445. https://books.ersjournals.com/content/ers-handbook-of-paediatric-respiratory-medicine
  • Waters V, Stanojevic S, Atenafu EG, et al. Effect of pulmonary exacerbations on long-term lung function decline in cystic fibrosis. Eur Respir J. 2012;40(1):61–66. doi: 10.1183/09031936.00159111
  • Nixon GM, Armstrong DS, Carzino R, et al. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 2001;138(5):699–704. doi: 10.1067/mpd.2001.112897
  • Emerson J, Rosenfeld M, McNamara S, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002;34(2):91–100. doi: 10.1002/ppul.10127
  • Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev. 2002;3(2):128–134. doi: 10.1016/s1526-0550(02)00003-3
  • Bhatt JM. Treatment of pulmonary exacerbations in cystic fibrosis. Eur Respir Rev. 2013;22(129):205–216. doi: 10.1183/09059180.00006512
  • Duckers J, Lesher B, Thorat T, et al. Real-world outcomes of ivacaftor treatment in people with cystic fibrosis: a systematic review. J Clin Med. 2021;10(7). doi: 10.3390/jcm10071527
  • King JA, Nichols AL, Bentley S, et al. An update on CFTR modulators as new therapies for cystic fibrosis. Paediatr Drugs. 2022;24(4):321–333. doi: 10.1007/s40272-022-00509-y
  • Joseph PD, Craig JC, Caldwell PH. Clinical trials in children. Br J Clin Pharmacol. 2015;79(3):357–369. doi: 10.1111/bcp.12305
  • Stockmann C, Barrett JS, Roberts JK, et al. Use of modeling and simulation in the design and conduct of pediatric clinical trials and the optimization of individualized dosing regimens. CPT Pharmacometrics Syst Pharmacol. 2015;4(11):630–640. Epub 20151113. doi: 10.1002/psp4.12038
  • Smits A, Annaert P, Cavallaro G, et al. Current knowledge, challenges and innovations in developmental pharmacology: a combined conect4children expert group and european society for developmental Perinatal And Paediatric Pharmacology White Paper. Br J Clin Pharmacol. 2022;88(12):4965–4984. doi: 10.1111/bcp.14958
  • De Sutter PJ, Gasthuys E, Van Braeckel E, et al. Pharmacokinetics in patients with cystic fibrosis: a systematic review of data published between 1999 and 2019. Clin Pharmacokinet. 2020;59(12):1551–1573. doi: 10.1007/s40262-020-00932-9
  • De Sutter PJ, Van Haeverbeke M, Van Braeckel E, et al. Altered intravenous drug disposition in people living with cystic fibrosis: A meta-analysis integrating top-down and bottom-up data. CPT Pharmacometrics Syst Pharmacol. 2022;11(8):951–966. doi: 10.1002/psp4.12832
  • Choong E, Sauty A, Koutsokera A, et al. Therapeutic drug monitoring of ivacaftor, lumacaftor, tezacaftor, and elexacaftor in cystic fibrosis: where are we now? Pharmaceutics. 2022;14(8):1674. doi: 10.3390/pharmaceutics14081674
  • Sanz-Codina M, Bozkir H, Jorda A, et al. Individualized antimicrobial dose optimization: a systematic review and meta-analysis of randomized controlled trials. Clin Microbiol Infect. 2023;29(7):845–857. doi: 10.1016/j.cmi.2023.03.018
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of america, the pediatric infectious diseases society, and the society of infectious diseases pharmacists. Am J Health Syst Pharm. 2020;77(11):835–864. doi: 10.1093/ajhp/zxaa036
  • Blix HS, Viktil KK, Moger TA, et al. Drugs with narrow therapeutic index as indicators in the risk management of hospitalised patients. Pharm Pract (Granada). 2010;8(1):50–55. doi: 10.4321/s1886-36552010000100006
  • Roberts JA, Norris R, Paterson DL, et al. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 2012;73(1):27–36. doi: 10.1111/j.1365-2125.2011.04080.x
  • Gilbert DN, Saag MS, Pavia AT, et al. The sanford guide to antimicrobial therapy. VA USA: Sperryville; 2022.
  • Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43(4):727–737. doi: 10.1128/aac.43.4.727
  • Ochs MA, Dillman NO, Caverly LJ, et al. Aminoglycoside dosing and monitoring for Pseudomonas aeruginosa during acute pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol. 2021;56(12):3634–3643. doi: 10.1002/ppul.25441
  • Praet A, Bourguignon L, Vetele F, et al. Population pharmacokinetic modeling and dosing simulations of tobramycin in pediatric patients with cystic fibrosis. Antimicrob Agents Chemother. 2021;65(10):e0073721. doi: 10.1128/aac.00737-21
  • Dong M, Rodriguez AV, Blankenship CA, et al. Pharmacokinetic modelling to predict risk of ototoxicity with intravenous tobramycin treatment in cystic fibrosis. J Antimicrob Chemother. 2021;76(11):2923–2931. doi: 10.1093/jac/dkab288
  • UK Cystic Fibrosis Trust Antibiotic Working Group. Antibiotic Treatment for Cystic Fibrosis Guidelines 2009. https://www.cysticfibrosis.org.uk/sites/default/files/2020-11/Anitbiotic%20Treatment.pdf.
  • Flume PA, Mogayzel PJ Jr., Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802–808. doi: 10.1164/rccm.200812-1845PP
  • Smyth A, Tan KH, Hyman-Taylor P, et al. Once versus three-times daily regimens of tobramycin treatment for pulmonary exacerbations of cystic fibrosis–the TOPIC study: a randomised controlled trial. Lancet. 2005;365(9459):573–578. doi: 10.1016/s0140-6736(05)17906-9
  • Larcombe R, Coulthard K, Eaton V, et al. Is there a multinational consensus of tobramycin prescribing and monitoring for cystic fibrosis? Survey of current therapeutic drug monitoring practices in USA/Canada, UK/Ireland, and Australia/New Zealand. Eur J Hosp Pharm. 2022; doi:10.1136/ejhpharm-2022-003545
  • Mouton JW, Jacobs N, Tiddens H, et al. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis. 2005;52(2):123–127. doi: 10.1016/j.diagmicrobio.2005.02.011
  • Burgard M, Sandaradura I, van Hal SJ, et al. Evaluation of tobramycin exposure predictions in three bayesian forecasting programmes compared with current clinical practice in children and adults with cystic fibrosis. Clin Pharmacokinet. 2018;57(8):1017–1027. doi: 10.1007/s40262-017-0610-9
  • Imani S, Fitzgerald DA, Robinson PD, et al. Personalized tobramycin dosing in children with cystic fibrosis: a comparative clinical evaluation of log-linear and Bayesian methods. J Antimicrob Chemother. 2022;77(12):3358–3366. doi: 10.1093/jac/dkac324
  • Ambrose PG, Bhavnani SM, Rubino CM, et al. Antimicrobial resistance: pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86. doi: 10.1086/510079
  • Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis. 1995;22(1–2):89–96. doi: 10.1016/0732-8893(95)00053-d
  • Imburgia TA, Kussin ML. A review of extended and continuous infusion beta-lactams in pediatric patients. J Pediatr Pharmacol Ther. 2022;27(3):214–227. doi: 10.5863/1551-6776-27.3.214
  • Abdul-Aziz MH, Alffenaar JC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper(). Intensive care Med. 2020;46(6):1127–1153. doi: 10.1007/s00134-020-06050-1
  • Bui S, Facchin A, Ha P, et al. Population pharmacokinetics of ceftazidime in critically ill children: impact of cystic fibrosis. J Antimicrob Chemother. 2020;75(8):2232–2239. doi: 10.1093/jac/dkaa170
  • Pettit RS, Neu N, Cies JJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71(1):189–195. doi: 10.1093/jac/dkv289
  • Du X, Li C, Kuti JL, et al. Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J Clin Pharmacol. 2006;46(1):69–75. doi: 10.1177/0091270005283283
  • Hong LT, Liou TG, Deka R, et al. Pharmacokinetics of continuous infusion beta-lactams in the treatment of acute pulmonary exacerbations in adult patients with cystic fibrosis. Chest. 2018;154(5):1108–1114. doi: 10.1016/j.chest.2018.06.002
  • Kuti JL, Pettit RS, Neu N, et al. Meropenem time above the MIC exposure is predictive of response in cystic fibrosis children with acute pulmonary exacerbations. Diagn Microbiol Infect Dis. 2018;91(3):294–297. doi: 10.1016/j.diagmicrobio.2018.01.020
  • Hubert D, Le Roux E, Lavrut T, et al. Continuous versus intermittent infusions of ceftazidime for treating exacerbation of cystic fibrosis. Antimicrob Agents Chemother. 2009;53(9):3650–3656. doi: 10.1128/aac.00174-09
  • Katz JB, Shah P, Trillo CA, et al. Therapeutic drug monitoring in cystic fibrosis and associations with pulmonary exacerbations and lung function. Respir med. 2023;212:107237. doi:10.1016/j.rmed.2023.107237
  • Cowart MC, Ferguson CL. Optimization of aztreonam in combination with ceftazidime/avibactam in a cystic fibrosis patient with chronic stenotrophomonas maltophilia pneumonia using therapeutic drug monitoring: a case study. Ther Drug Monit. 2021;43(2):146–149. doi: 10.1097/ftd.0000000000000857
  • Saffioti C, Barco S, Cangemi G, et al. Ceftazidime plasma concentration in a patient with cystic fibrosis treated with ceftazidime/avibactam plus trimethoprim/sulfametoxazole for Bulkholderia cepacia reacutization. J Chemother. 2019;31(7–8):436–438. doi: 10.1080/1120009x.2019.1671654
  • Liebchen U, Paal M, Jung J, et al. Therapeutic drug monitoring-guided high dose meropenem therapy of a multidrug resistant Acinetobacter baumannii - a case report. Respir Med Case Rep. 2020;29:100966. doi:10.1016/j.rmcr.2019.100966
  • Mortensen JS, Jensen BP, Zhang M, et al. Preanalytical stability of piperacillin, tazobactam, meropenem, and ceftazidime in plasma and whole blood using liquid chromatography-tandem mass spectrometry. Ther Drug Monit. 2019;41(4):538–543. doi: 10.1097/ftd.0000000000000650
  • Kipper K, Barker CIS, Standing JF, et al. Development of a novel multipenicillin assay and assessment of the impact of analyte degradation: lessons for scavenged sampling in antimicrobial pharmacokinetic study design. Antimicrob Agents Chemother. 2018;62(1). doi: 10.1128/aac.01540-17
  • McDade EJ, Hewlett JL, Moonnumakal SP, et al. Evaluation of vancomycin dosing in pediatric cystic fibrosis patients. J Pediatr Pharmacol Ther. 2016;21(2):155–161. doi: 10.5863/1551-6776-21.2.155
  • Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American society of health-system pharmacists, the infectious diseases society of america, and the society of infectious diseases pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98. doi: 10.2146/ajhp080434
  • Tsutsuura M, Moriyama H, Kojima N, et al. The monitoring of vancomycin: a systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect Dis. 2021;21(1):153. doi: 10.1186/s12879-021-05858-6
  • Fusco NM, Prescott WA Jr., Meaney CJ. Pharmacokinetic monitoring of vancomycin in cystic fibrosis: is it time to move past trough concentrations? Pediatr Infect Dis J. 2019;38(3):258–262. doi: 10.1097/inf.0000000000002088
  • Stockmann C, Olson J, Rashid J, et al. An evaluation of vancomycin area under the curve estimation methods for children treated for acute pulmonary exacerbations of cystic fibrosis due to methicillin-resistant Staphylococcus aureus. J Clin Pharmacol. 2019;59(2):198–205. doi: 10.1002/jcph.1323
  • Mitchell B, Kormelink L, Kuhn R, et al. Retrospective review of vancomycin monitoring via trough only versus two-point estimated area under the curve in pediatric and adult patients with cystic fibrosis. Pediatr Pulmonol. 2023;58(1):239–245. doi: 10.1002/ppul.26190
  • Prentice AG, Glasmacher A. Making sense of itraconazole pharmacokinetics. J Antimicrob Chemother. 2005;56(Suppl 1):i17–i22. doi: 10.1093/jac/dki220
  • Conway SP, Etherington C, Peckham DG, et al. Pharmacokinetics and safety of itraconazole in patients with cystic fibrosis. J Antimicrob Chemother. 2004;53(5):841–847. doi: 10.1093/jac/dkh175
  • Bentley S, Gupta A, Balfour-Lynn IM. Subtherapeutic itraconazole and voriconazole levels in children with cystic fibrosis. J Cyst Fibros. 2013;12(4):418–419. doi: 10.1016/j.jcf.2012.09.007
  • Sermet-Gaudelus I, Lesne-Hulin A, Lenoir G, et al. Sputum itraconazole concentrations in cystic fibrosis patients. Antimicrob Agents Chemother. 2001;45(6):1937–1938. doi: 10.1128/aac.45.6.1937-1938.2001
  • Hennig S, Wainwright CE, Bell SC, et al. Population pharmacokinetics of itraconazole and its active metabolite hydroxy-itraconazole in paediatric cystic fibrosis and bone marrow transplant patients. Clin Pharmacokinet. 2006;45(11):1099–1114. doi: 10.2165/00003088-200645110-00004
  • Aaron SD, Vandemheen KL, Freitag A, et al. Treatment of Aspergillus fumigatus in patients with cystic fibrosis: a randomized, placebo-controlled pilot study. Plos One. 2012;7(4):e36077. doi: 10.1371/journal.pone.0036077
  • Gothe F, Schmautz A, Häusler K, et al. Treating allergic bronchopulmonary aspergillosis with short-term prednisone and itraconazole in cystic fibrosis. J Allergy Clin Immunol Pract. 2020;8(8):2608–14.e3. doi: 10.1016/j.jaip.2020.02.031
  • Willems L, van der Geest R, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther. 2001;26(3):159–169. doi: 10.1046/j.1365-2710.2001.00338.x
  • Ashbee HR, Barnes RA, Johnson EM, et al. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the british society for medical mycology. J Antimicrob Chemother. 2014;69(5):1162–1176. doi: 10.1093/jac/dkt508
  • Warris A, Lehrnbecher T, Roilides E, et al. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children. Clin Microbiol Infect. 2019;25(9):1096–1113. doi: 10.1016/j.cmi.2019.05.019
  • Gómez-López A. Antifungal therapeutic drug monitoring: focus on drugs without a clear recommendation. Clin Microbiol Infect. 2020;26(11):1481–1487. doi: 10.1016/j.cmi.2020.05.037
  • Hilliard T, Edwards S, Buchdahl R, et al. Voriconazole therapy in children with cystic fibrosis. J Cyst Fibros. 2005;4(4):215–220. doi: 10.1016/j.jcf.2005.05.019
  • Ikeda Y, Umemura K, Kondo K, et al. Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther. 2004;75(6):587–588. doi: 10.1016/j.clpt.2004.02.002
  • Medicines and Healthcare Products Regulatory Agency. Voriconazole: reminder of risk of liver toxicity, phototoxicity, and squamous cell carcinoma. [2023 February 23rd]. Available from: https://www.gov.uk/drug-safety-update/voriconazole-reminder-of-risk-of-liver-toxicity-phototoxicity-and-squamous-cell-carcinoma
  • Luong ML, Al-Dabbagh M, Groll AH, et al. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother. 2016;71(7):1786–1799. doi: 10.1093/jac/dkw099
  • Markantonis SL, Katelari A, Pappa E, et al. Voriconazole pharmacokinetics and photosensitivity in children with cystic fibrosis. J Cyst Fibros. 2012;11(3):246–252. doi: 10.1016/j.jcf.2011.12.006
  • Bentley S, Davies JC, Gastine S, et al. Clinical pharmacokinetics and dose recommendations for posaconazole gastroresistant tablets in children with cystic fibrosis. J Antimicrob Chemother. 2021;76(12):3247–3254. doi: 10.1093/jac/dkab312
  • Summary of Product Characteristics (SmPC). Noxafil 100mg gastro-resistant tablets. merck sharp & dohme (UK) limited. Updated: 6th Sep 2022. [Online].: [2023 Feb 22nd]. Available from: https://www.medicines.org.uk/emc/product/5388/smpc
  • Patel D, Popple S, Claydon A, et al. Posaconazole therapy in children with cystic fibrosis and Aspergillus-related lung disease. Med Mycol. 2020;58(1):11–21. doi: 10.1093/mmy/myz015
  • Shearin S, Bell T. Treatment of Aspergillus fumigatus infection with posaconazole delayed-release tablets. Am J Health Syst Pharm. 2018;75(13):958–961. doi: 10.2146/ajhp170534
  • Yakut N, Kadayifci EK, Eralp EE, et al. Successful treatment of allergic bronchopulmonary aspergillosis with posaconazole in a child with cystic fibrosis: case report and review of the literature. Lung India. 2020;37(2):161–163. doi: 10.4103/lungindia.lungindia_288_19
  • Bentley S, Davies JC, Carr SB, et al. Combination antifungal therapy for scedosporium species in cystic fibrosis. Pediatr Pulmonol. 2020;55(8):1993–1995. doi: 10.1002/ppul.24789
  • Agarwal N, Apperley L, Taylor NF, et al. Posaconazole-induced hypertension masquerading as congenital adrenal hyperplasia in a child with cystic fibrosis. Case Rep Med. 2020;2020:1–5. doi:10.1155/2020/8153012
  • Mills R, Rautemaa-Richardson R, Wilkinson S, et al. Impact of airway Exophiala spp. on children with cystic fibrosis. J Cyst Fibros. 2021;20(4):702–707. doi: 10.1016/j.jcf.2021.03.012
  • Boonsathorn S, Cheng I, Kloprogge F, et al. Clinical pharmacokinetics and dose recommendations for posaconazole in infants and children. Clin Pharmacokinet. 2019;58(1):53–61. doi: 10.1007/s40262-018-0658-1
  • Walsh TJ, Raad I, Patterson TF, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44(1):2–12. doi: 10.1086/508774
  • Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med. 1995;332(13):848–854. doi: 10.1056/nejm199503303321303
  • Lands LC, Milner R, Cantin AM, et al. High-dose ibuprofen in cystic fibrosis: Canadian safety and effectiveness trial. J Pediatr. 2007;151(3):249–254. doi: 10.1016/j.jpeds.2007.04.009
  • Lands LC, Stanojevic S. Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst Rev. 2019;9(9):Cd001505. Epub 20190909. doi: 10.1002/14651858.CD001505.pub5
  • Konstan MW, VanDevanter DR, Sawicki GS, et al. Association of high-dose ibuprofen use, lung function decline, and long-term survival in children with cystic fibrosis. Ann Am Thorac Soc. 2018;15(4):485–493. doi: 10.1513/AnnalsATS.201706-486OC
  • Lands LC, Dauletbaev N. High-dose ibuprofen in cystic fibrosis. Pharmaceuticals (Basel). 2010;3(7):2213–2224. doi: 10.3390/ph3072213
  • Mogayzel PJ Jr., Naureckas ET, Robinson KA, et al. Cystic fibrosis pulmonary guidelines. chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–689. doi: 10.1164/rccm.201207-1160oe
  • Konstan MW, Krenicky JE, Finney MR, et al. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J Pharmacol Exp Ther. 2003;306(3):1086–1091. doi: 10.1124/jpet.103.052449
  • Arranz I, Martín-Suárez A, Lanao JM, et al. Population pharmacokinetics of high dose ibuprofen in cystic fibrosis. Arch Dis Child. 2003;88(12):1128–1130. doi: 10.1136/adc.88.12.1128
  • Han EE, Beringer PM, Louie SG, et al. Pharmacokinetics of Ibuprofen in children with cystic fibrosis. Clin Pharmacokinet. 2004;43(3):145–156. doi: 10.2165/00003088-200443030-00001
  • Bruch BA, Singh SB, Ramsey LJ, et al. Impact of a cystic fibrosis transmembrane conductance regulator (CFTR) modulator on high-dose ibuprofen therapy in pediatric cystic fibrosis patients. Pediatr Pulmonol. 2018;53(8):1035–1039. doi: 10.1002/ppul.24024
  • Konstan MW. Ibuprofen therapy for cystic fibrosis lung disease: revisited. Curr Opin Pulm Med. 2008;14(6):567–573. doi: 10.1097/MCP.0b013e32831311e8
  • Lopes-Pacheco M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol. 2019;10:1662. doi: 10.3389/fphar.2019.01662
  • Trittler R, Hug M. PKP-017 monitoring of ivacaftor serum levels. Eur J Hosp Pharm Sci Pract. 2014;21(Suppl 1):A143.2–A144. doi: 10.1136/ejhpharm-2013-000436.352
  • Masson A, Schneider-Futschik EK, Baatallah N, et al. Predictive factors for lumacaftor/ivacaftor clinical response. J Cyst Fibros. 2019;18(3):368–374. doi: 10.1016/j.jcf.2018.12.011
  • Hanafin PO, Sermet-Gaudelus I, Griese M, et al. Insights into patient variability during ivacaftor-lumacaftor therapy in cystic fibrosis. Front Pharmacol. 2021;12:577263. doi:10.3389/fphar.2021.577263
  • van der Meer R, Wilms EB, Sturm R, et al. Pharmacokinetic interactions between ivacaftor and cytochrome P450 3A4 inhibitors in people with cystic fibrosis and healthy controls. J Cyst Fibros. 2021;20(5):e72–e6. doi: 10.1016/j.jcf.2021.04.005
  • Summary of Product Characteristics (SmPC). Kaftrio 75 mg 50 mg 100 mg film-coated tablets. vertex pharmaceuticals (Europe) Ltd. Updated: 15th Dec 2022. [Online]. Available from: https://www.medicines.org.uk/emc/product/11724/smpc [Accessed 22nd Feb 2023].
  • Summary of Product Characteristics (SmPC). Kalydeco 150mg film-coated tablets. vertex pharmaceuticals (Europe) Ltd. Updated: 16th Nov 2022. [Online]. Available from: https://www.medicines.org.uk/emc/product/3040/smpc [Accessed 22nd Feb 2023].
  • Vonk SEM, van der Meer-Vos M, Bos LDJ, et al. Quantitative method for the analysis of ivacaftor, hydroxymethyl ivacaftor, ivacaftor carboxylate, lumacaftor, and tezacaftor in plasma and sputum using liquid chromatography with tandem mass spectrometry and its clinical applicability. Ther Drug Monit. 2021;43(4):555–563. doi: 10.1097/ftd.0000000000000829
  • Baroud E, Chaudhary N, Georgiopoulos AM. Management of neuropsychiatric symptoms in adults treated with elexacaftor/tezacaftor/ivacaftor. Pediatr Pulmonol. 2023;58(7):1920–1930. doi: 10.1002/ppul.26412
  • Spoletini G, Gillgrass L, Pollard K, et al. Dose adjustments of Elexacaftor/Tezacaftor/Ivacaftor in response to mental health side effects in adults with cystic fibrosis. J Cyst Fibros. 2022;21(6):1061–1065. doi: 10.1016/j.jcf.2022.05.001
  • Heo S, Young DC, Safirstein J, et al. Mental status changes during elexacaftor/tezacaftor/ivacaftor therapy. J Cyst Fibros. 2022;21(2):339–343. doi: 10.1016/j.jcf.2021.10.002
  • Zhang L, Albon D, Jones M, et al. Impact of elexacaftor/tezacaftor/ivacaftor on depression and anxiety in cystic fibrosis. Ther Adv Respir Dis. 2022;16:17534666221144211. doi: 10.1177/17534666221144211
  • Sergeev V, Chou FY, Lam GY, et al. The extrapulmonary effects of cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Ann Am Thorac Soc. 2020;17(2):147–154. doi: 10.1513/AnnalsATS.201909-671CME
  • Drummond D, Dana J, Berteloot L, et al. Lumacaftor-ivacaftor effects on cystic fibrosis-related liver involvement in adolescents with homozygous F508 del-CFTR. J Cyst Fibros. 2022;21(2):212–219. doi: 10.1016/j.jcf.2021.07.018
  • Valamparampil JJ, Gupte GL. Cystic fibrosis associated liver disease in children. World J Hepatol. 2021;13(11):1727–1742. doi: 10.4254/wjh.v13.i11.1727
  • Jain R, Kazmerski TM, Zuckerwise LC, et al. Pregnancy in cystic fibrosis: review of the literature and expert recommendations. J Cyst Fibros. 2022;21(3):387–395. doi: 10.1016/j.jcf.2021.07.019
  • Nash EF, Middleton PG, Taylor-Cousar JL. Outcomes of pregnancy in women with cystic fibrosis (CF) taking CFTR modulators - an international survey. J Cyst Fibros. 2020;19(4):521–526. doi: 10.1016/j.jcf.2020.02.018
  • Jain R, Magaret A, Vu PT, et al. Prospectively evaluating maternal and fetal outcomes in the era of CFTR modulators: the MAYFLOWERS observational clinical trial study design. BMJ Open Respir Res. 2022;9(1):e001289. doi: 10.1136/bmjresp-2022-001289
  • Schneider EK, Reyes-Ortega F, Li J, et al. Optimized LC-MS/MS method for the high-throughput analysis of clinical samples of ivacaftor, its major metabolites, and lumacaftor in biological fluids of cystic fibrosis patients. J Vis Exp. 2017128: doi:10.3791/56084-v
  • Reyes-Ortega F, Qiu F, Schneider-Futschik EK. Multiple reaction monitoring mass spectrometry for the drug monitoring of ivacaftor, tezacaftor, and elexacaftor treatment response in cystic fibrosis: a high-throughput method. ACS Pharmacol Transl Sci. 2020;3(5):987–996. doi: 10.1021/acsptsci.0c00103
  • Habler K, Kalla AS, Rychlik M, et al. Isotope dilution LC-MS/MS quantification of the cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor, lumacaftor, tezacaftor, elexacaftor, and their major metabolites in human serum. Clin Chem Lab Med. 2022;60(1):82–91. doi: 10.1515/cclm-2021-0724
  • European Commission. State of paediatric medicines in the eu. 10 years of the eu paediatric regulation. report from the commission to the european parliament and the council. COM p. 626. 2017. [Online]. Available from: https://health.ec.europa.eu/system/files/2017-11/2017_childrensmedicines_report_en_0.pdf [ Accessed 23rd February 2023].
  • Abdolrasouli A, Scourfield A, Rhodes J, et al. High prevalence of triazole resistance in clinical Aspergillus fumigatus isolates in a specialist cardiothoracic centre. Int J Antimicrob Agents. 2018;52(5):637–642. doi: 10.1016/j.ijantimicag.2018.08.004
  • Zhang Y, Wang T, Zhang D, et al. Therapeutic drug monitoring coupled with bayesian forecasting could prevent vancomycin-associated nephrotoxicity in renal insufficiency patients: a prospective study and pharmacoeconomic analysis. Ther Drug Monit. 2020;42(4):600–609. doi: 10.1097/ftd.0000000000000750
  • Stocco G, Lucafò M, Decorti G. Pharmacogenomics of Antibiotics. Int J Mol Sci. 2020;21(17). doi: 10.3390/ijms21175975
  • Ayers S, Muller I, Mahoney L, et al. Understanding needle-related distress in children with cystic fibrosis. Br J Health Psychol. 2011;16(Pt 2):329–343. doi: 10.1348/135910710x506895
  • Spencer H, Kozlowska W, Davies JC, et al. Measurement of tobramycin and gentamicin in saliva is not suitable for therapeutic drug monitoring of patients with cystic fibrosis. J Cyst Fibros. 2005;4(3):209. doi: 10.1016/j.jcf.2005.05.016
  • Vanstraelen K, Maertens J, Augustijns P, et al. Investigation of saliva as an alternative to plasma monitoring of voriconazole. Clin Pharmacokinet. 2015;54(11):1151–1160. doi: 10.1007/s40262-015-0269-z
  • Kim HY, Märtson AG, Dreesen E, et al. Saliva for precision dosing of antifungal drugs: saliva population pk model for voriconazole based on a systematic review. Front Pharmacol. 2020;11:894. doi:10.3389/fphar.2020.00894
  • Singh KD, Osswald M, Ziesenitz VC, et al. Personalised therapeutic management of epileptic patients guided by pathway-driven breath metabolomics. Commun Med (Lond). 2021;1(1):21. doi: 10.1038/s43856-021-00021-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.