134
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Artificial intelligence and machine learning in clinical pharmacological research

ORCID Icon, ORCID Icon & ORCID Icon
Pages 79-91 | Received 28 Aug 2023, Accepted 08 Dec 2023, Published online: 02 Jan 2024

References

  • Birkett D, Brosen K, Cascorbi I, et al. Clinical pharmacology in research, teaching and health care: considerations by IUPHAR, the International Union of basic and clinical pharmacology. Basic Clin Pharmacol Toxicol. 2010;107(1):531–559. doi: 10.1111/j.1742-7843.2010.00602.x
  • Murray CD, Dermott SF. Solar System dynamics. Cambridge: Cambridge University Press; 2000.
  • Murphy KP. Machine learning: a probabilistic perspective. Cambridge, MA, USA: The MIT Press; 2012.
  • Dhar V. Data science and prediction. Commun ACM. 2013;56(12):64–73. doi:10.1145/2500499
  • Turing A. I. Computing machinery and intelligence. Mind. 1950;LIX(236):433–460. doi: 10.1093/mind/LIX.236.433
  • Kuhn M, Johnson K. Classification trees and rule-based models. In: Kuhn M Johnson K, editors. Applied predictive modeling. New York (NY) : Springer; 2013. p. 369–413.
  • Lötsch J, Malkusch S. Interpretation of cluster structures in pain-related phenotype data using explainable artificial intelligence (XAI). Eur J Pain. 2021;25(2):442–465. doi:10.1002/ejp.1683
  • Hotelling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24(7):498–520. doi:10.1037/h0070888
  • Pearson KL. LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci. 1901;2(11):559–572. doi:10.1080/14786440109462720
  • Lötsch J, Lerch F, Djaldetti R, et al. Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (umatrix). BMC Big Data Analytics. 2018;3(5). doi: 10.1186/s41044-018-0032-1
  • Ultsch A. Maps for visualization of high-dimensional data spaces. In: Proceedings Workshop on Self-Organizing Maps (WSOM 2003); Kyushu, Japan; 2003. p. 225–230.
  • MacQueen J Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. Ed.^(Eds). Berkeley, Calif.; University of California Press; 1967. p. 281–297.
  • Steinhaus H. Sur la division des corps matériels en parties. Bull Acad Polon Sci. 1956;1(804):801.
  • Sander J, Ester M, Kriegel H-P, et al. Density-based clustering in Spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Discov. 1998;2(2):169–194. doi:10.1023/A:1009745219419
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets. In: Ghahramani Z, Welling M, Cortes C, et al., editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2014. Vol. 27. https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
  • Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA, USA: MIT press; 2018.
  • Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: a survey. J Artif Intell Res. 1996;4:237–285. doi:10.1613/jair.301
  • Tseng HH, Luo Y, Cui S, et al. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017;44(12):6690–6705. doi:10.1002/mp.12625
  • Yu C, Dong Y, Liu J, et al. Incorporating causal factors into reinforcement learning for dynamic treatment regimes in HIV. BMC Med Inform Decis Mak. 2019;19(Suppl 2):60. doi:10.1186/s12911-019-0755-6
  • Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5(3):299–314. doi:10.1080/10618600.1996.10474713
  • R development core team. R: a language and environment for statistical computing; 2008.
  • Van Rossum G, Drake FL Jr. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam; 1995.
  • Falagas ME, Pitsouni EI, Malietzis GA, et al. Comparison of PubMed, Scopus, web of science, and google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–342. doi:10.1096/fj.07-9492LSF
  • Fantini D. easyPubMed: Search and retrieve scientific publication records from PubMed. 2019.
  • Kovalchik S. RISmed: Download content from NCBI databases. 2020.
  • Fan FY. PubMedWordcloud: ‘pubmed’ word clouds_. R package version 0.3.6. 2019. Available from: https://CRAN.R-project.org/package=PubMedWordcloud
  • DeJesus Jasmine M, Callanan Maureen A, Solis G, et al. Generic language in scientific communication. Proc Nat Acad Sci. 2019;116(37):18370–18377. doi:10.1073/pnas.1817706116
  • Ardizzone E, Bonadonna F, Gaglio S, et al. Artificial intelligence techniques for cancer treatment planning. Med Inform (Lond). 1988;13(3):199–210. doi: 10.3109/14639238809010100
  • Wickham H. ggplot2: elegant graphics for data analysis. New York (NY): Springer-Verlag; 2009.
  • Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281–286. doi:10.1007/s12098-020-03263-6
  • Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi:10.1016/j.ijantimicag.2020.105924
  • Sun L, Li P, Ju X, et al. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell. 2021;184(7):1865–1883.e1820. doi: 10.1016/j.cell.2021.02.008
  • Chan D, Feng C, Spitale RC. Measuring RNA structure transcriptome-wide with icSHAPE. Methods. 2017;120:85–90. doi:10.1016/j.ymeth.2017.02.010
  • Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300(5626):1763–1767. doi:10.1126/science.1085658
  • Prescott L. SARS-CoV-2 3CLpro whole human proteome cleavage prediction and enrichment/depletion analysis. Comput Biol Chem. 2022;98:107671. doi:10.1016/j.compbiolchem.2022.107671
  • Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta Protein Struct. 1975;405(2):442–451. doi:10.1016/0005-2795(75)90109-9
  • Coban MA, Morrison J, Maharjan S, et al. Attacking COVID-19 progression using multi-drug therapy for synergetic target engagement. Biomolecules. 2021;11(6):787. doi: 10.3390/biom11060787
  • Tremblay S, Pieper F, Sachs A, et al. The effects of methylphenidate (ritalin) on the neurophysiology of the monkey caudal prefrontal cortex. eNeuro. 2019;6(1):ENEURO.0371–18.2018. doi: 10.1523/ENEURO.0371-18.2018
  • Lötsch J, Geisslinger G. Pharmacogenetics of new analgesics. Br J Pharmacol. 2011;163(3):447–460. doi:10.1111/j.1476-5381.2010.01074.x
  • Kringel D, Malkusch S, Lötsch J. Drugs and epigenetic molecular functions. A pharmacological data scientometric analysis. Int J Mol Sci. 2021;22(14):7250. doi: 10.3390/ijms22147250
  • Lötsch J, Kringel D. Use of computational functional genomics in drug discovery and repurposing for analgesic indications. Clin Pharmacol Ther. 2018;103(6):975–978. doi:10.1002/cpt.960
  • Lötsch J, Mustonen L, Harno H, et al. Machine-learning analysis of serum proteomics in neuropathic pain after nerve injury in breast cancer surgery points at chemokine signaling via SIRT2 regulation. Int J Mol Sci. 2022;23(7):3488. doi: 10.3390/ijms23073488
  • Lippmann C, Kringel D, Ultsch A, et al. Computational functional genomics-based approaches in analgesic drug discovery and repurposing. Pharmacogenomics. 2018;19(9):783–797. doi:10.2217/pgs-2018-0036
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–d1082. doi: 10.1093/nar/gkx1037
  • Lötsch J, Knothe C, Lippmann C, et al. Olfactory drug effects approached from human-derived data. Drug Discov Today. 2015;20(11):1398–1406. doi:10.1016/j.drudis.2015.06.012
  • Lötsch J, Daiker H, Hähner A, et al. Drug-target based cross-sectional analysis of olfactory drug effects. Eur J Clin Pharmacol. 2015;71(4):461–471. doi:10.1007/s00228-015-1814-2
  • Challa AP, Beam AL, Shen M, et al. Machine learning on drug-specific data to predict small molecule teratogenicity. Reprod Toxicol. 2020;95:148–158. doi: 10.1016/j.reprotox.2020.05.004
  • Van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Machine Learn Res. 2008;9:2579–2605.
  • Lötsch J, Ultsch A. Current projection methods-induced biases at subgroup detection for machine-learning based data-analysis of biomedical data. Int J Mol Sci. 2019;21(1):79. doi: 10.3390/ijms21010079
  • Cheng J, Wang S, Lin W, et al. Computational systems pharmacology-target mapping for fentanyl-laced cocaine overdose. ACS Chem Neurosci. 2019;10(8):3486–3499. doi: 10.1021/acschemneuro.9b00109
  • Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the Third Millennium. Front Pharmacol. 2018;9:1300. doi:10.3389/fphar.2018.01300
  • Shi Q, Pei F, Silverman GA, et al. Mechanisms of action of autophagy modulators dissected by quantitative systems pharmacology analysis. Int J Mol Sci. 2020;21(8):2855. doi: 10.3390/ijms21082855
  • Ghaly G, Tallima H, Dabbish E, et al. Anti-cancer peptides: status and future prospects. Molecules. 2023;28(3):1148. doi: 10.3390/molecules28031148
  • Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol. 2020;10(7):200004. doi:10.1098/rsob.200004
  • Schaduangrat N, Nantasenamat C, Prachayasittikul V, et al. Acpred: a computational tool for the prediction and analysis of anticancer peptides. Molecules. 2019;24(10):1973. doi: 10.3390/molecules24101973
  • Song C, Pan S, Zhang J, et al. Mitophagy: a novel perspective for insighting into cancer and cancer treatment. Cell Prolif. 2022;55(12):e13327. doi:10.1111/cpr.13327
  • Aman Y, Frank J, Lautrup SH, et al. The NAD(+)-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev. 2020;185:111194. doi: 10.1016/j.mad.2019.111194
  • Fang EF, Tao J. Targeting on the NAD(+)-mitophagy axis to treat cardiovascular disease. Aging Med (Milton). 2020;3(3):151–152. doi:10.1002/agm2.12123
  • Pampaloni F, Mayer B, Kabat Vel-Job K, et al. A novel cellular spheroid-based autophagy screen applying live fluorescence microscopy identifies nonactin as a strong inducer of autophagosomal turnover. SLAS Discov. 2017;22(5):558–570. doi: 10.1177/2472555217696798
  • Cobanoglu MC, Liu C, Hu F, et al. Predicting drug-target interactions using probabilistic matrix factorization. J Chem Inf Model. 2013;53(12):3399–3409. doi:10.1021/ci400219z
  • Theuretzbacher U, Bush K, Harbarth S, et al. Critical analysis of antibacterial agents in clinical development. Nat Rev Microbiol. 2020;18(5):286–298. doi: 10.1038/s41579-020-0340-0
  • Mohr KI. History of antibiotics research. Curr Top Microbiol Immunol. 2016;398:237–272.
  • Dodds DR. Antibiotic resistance: a current epilogue. Biochem Pharmacol. 2017;134:139–146. doi:10.1016/j.bcp.2016.12.005
  • Wang G, Vaisman II, van Hoek ML. Machine learning prediction of antimicrobial peptides. Methods Mol Biol. 2022;2405:1–37.
  • Wang Z, Wang G. APD: the Antimicrobial Peptide Database. Nucleic Acids Res. 2004;32(Database issue):D590–592. doi:10.1093/nar/gkh025
  • Khaledi A, Weimann A, Schniederjans M, et al. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med. 2020;12(3):e10264. doi: 10.15252/emmm.201910264
  • Zhang M, Su S, Bhatnagar RK, et al. Prediction and analysis of the protein interactome in Pseudomonas aeruginosa to enable network-based drug target selection. PLoS One. 2012;7(7):e41202. doi:10.1371/journal.pone.0041202
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–816. doi:10.1016/j.bbapap.2008.11.005
  • Mehla J, Malloci G, Mansbach R, et al. Predictive Rules of Efflux Inhibition and Avoidance in Pseudomonas aeruginosa. MBio. 2021;12(1). doi: 10.1128/mBio.02785-20
  • Lötsch J, Ultsch A. A machine-learned computational functional genomics-based approach to drug classification. Eur J Clin Pharmacol. 2016;72(12):1449–1461. doi:10.1007/s00228-016-2134-x
  • Wilkins D. Treemapify: Draw treemaps in ‘ggplot2. 2020.
  • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408. doi:10.1037/h0042519
  • Lecun Y. A theoretical framework for back-propagation. Touretzky, D, Hinton, G, Sejnowski, T, Eds. Morgan Kaufmann; 1988. p. 21–28.
  • Jardim-Perassi BV, Mu W, Huang S, et al. Deep-learning and MR images to target hypoxic habitats with evofosfamide in preclinical models of sarcoma. Theranostics. 2021;11(11):5313–5329. doi: 10.7150/thno.56595
  • Attia ZI, Sugrue A, Asirvatham SJ, et al. Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study. PLoS One. 2018;13(8):e0201059. doi: 10.1371/journal.pone.0201059
  • Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc. Long Beach, California, USA; 2017. p. 6000–6010.
  • Hakeem H, Feng W, Chen Z, et al. Development and validation of a deep learning model for predicting treatment response in patients with newly diagnosed epilepsy. JAMA Neurol. 2022;79(10):986–996. doi: 10.1001/jamaneurol.2022.2514
  • Belur Nagaraj S, Ramaswamy SM, Weerink MAS, et al. Predicting deep hypnotic state from sleep brain rhythms using deep learning: a data-repurposing approach. Anesth Analg. 2020;130(5):1211–1221. doi:10.1213/ANE.0000000000004651
  • Ho TK. Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition (Volume 1) - Volume 1; Montreal, QC, Canada. IEEE; 1995. p. 278. doi: 10.1109/ICDAR.1995.598994. INSPEC Accession Number: 5628989.
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi:10.1023/A:1010933404324
  • Breiman L. Bagging Predictors. Mach Learn. 1996;24(2):123–140. doi: 10.1007/BF00058655
  • Lötsch J, Kringel D, Ultsch A. Explainable artificial intelligence (XAI) in biomedicine: making AI decisions trustworthy for physicians and patients. BioMedinformatics. 2022;2(1):1–17. doi: 10.3390/biomedinformatics2010001
  • Streun GL, Steuer AE, Poetzsch SN, et al. Towards a new qualitative screening assay for synthetic cannabinoids using metabolomics and machine learning. Clin Chem. 2022;68(6):848–855. doi:10.1093/clinchem/hvac045
  • Kim E, Choi AS, Nam H. Drug repositioning of herbal compounds via a machine-learning approach. BMC Bioinf. 2019;20(Suppl 10):247. doi:10.1186/s12859-019-2811-8
  • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–297. doi:10.1007/BF00994018
  • Mahajan K, Verma H, Choudhary S, et al. Identification of kinase inhibitors that rule out the CYP27B1-mediated activation of vitamin D: an integrated machine learning and structure-based drug designing approach. Mol Divers. 2021;25(3):1617–1641. doi:10.1007/s11030-021-10270-y
  • Kim MG, Kim J, Kim SC, et al. Twitter analysis of the nonmedical use and side effects of methylphenidate: machine learning study. J Med Internet Res. 2020;22(2):e16466. doi:10.2196/16466
  • Huang C, Clayton EA, Matyunina LV, et al. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy. Sci Rep. 2018;8(1):16444. doi: 10.1038/s41598-018-34753-5
  • Chollet F, Allaire JJ. Deep learning with R. NY USA: Manning Publications Co., Shelter Island; 2018.
  • Lötsch J, Ultsch A. Comments on the importance of visualizing the distribution of pain-related data. Eur J Pain. 2023;27(7):787–793. doi: 10.1002/ejp.2135
  • Pierson E, Cutler DM, Leskovec J, et al. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med. 2021;27(1):136–140. doi:10.1038/s41591-020-01192-7
  • Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access. 2018;6:52138–52160. doi:10.1109/ACCESS.2018.2870052
  • Turek M. Explainable artificial intelligence (XAI). 2016.
  • Arrieta AB, Díaz-Rodríguez N, Ser JD, et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.