136
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapeutic drug monitoring in kidney and liver transplantation: current advances and future directions

&
Pages 505-514 | Received 12 Aug 2023, Accepted 08 May 2024, Published online: 16 May 2024

References

  • Koch-Weser J. Serum drug concentrations as therapeutic guides. N Engl J Med. 1972;287(5):227–231. doi: 10.1056/NEJM197208032870505
  • Oellerich M, Kanzow P, Walson PD. Therapeutic drug monitoring – key to personalized pharmacotherapy. Clin Biochem. 2017;50(7–8):375–379. doi: 10.1016/j.clinbiochem.2017.01.007
  • Staatz C, Taylor P, Tett S. Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol Dialysis Transplantation. 2001;16(9):1905–1909. doi: 10.1093/ndt/16.9.1905
  • Pascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. JASN. 2018;29(7):1979–1991. doi: 10.1681/ASN.2018010009
  • Marcén R, Fernández-Rodriguez A, Rodríguez-Mendiola N, et al. Evolution of rejection rates and kidney graft survival: a historical analysis. In: Transplantation Proceedings; February 22-25, 2009; Barcelona. 2009. p. 2357–2359.
  • Kuypers DRJ, Claes K, Evenepoel P, et al. Time-related clinical determinants of long-term tacrolimus pharmacokinetics in combination therapy with mycophenolic acid and corticosteroids: a prospective study in one hundred De novo renal transplant recipients. Clin Pharmacokinet. 2004;43(11):741–762. doi: 10.2165/00003088-200443110-00005
  • Vanhove T, Annaert P, Kuypers DRJ. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metab Rev. 2016;48(1):88–112. doi: 10.3109/03602532.2016.1151037
  • Sallustio BC, Noll BD, Hu R, et al. Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients. Brit J Clinical Pharma. 2021;87(10):3901–3909. doi: 10.1111/bcp.14806
  • Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs. 2020;44:140–152. doi: 10.1111/aor.13551
  • Laskow DA, Vincenti F, Neylan JF, et al. An open-label, concentration-ranging trial of FK506 in primary kidney transplantation: a report of the United States multicenter FK506 kidney transplant Group1. Transplantation. 1996;62:900–905. doi: 10.1097/00007890-199610150-00005
  • Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307. doi: 10.1097/FTD.0000000000000640
  • Ekberg H, Tedesco-Silva H, Demirbas A, et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357(25):2562–2575. doi: 10.1056/NEJMoa067411
  • Kuypers D. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther. 2004;75(5):434–447. doi: 10.1016/j.clpt.2003.12.009
  • Kershner RP, Fitzsimmons WE. relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. Transplantation. 1996;62:920–926. doi: 10.1097/00007890-199610150-00009
  • Nguyen TVA, Nguyen HD, Nguyen TLH, et al. Higher tacrolimus trough levels and time in the therapeutic range are associated with the risk of acute rejection in the first month after renal transplantation. BMC Nephrol. 2023;24(1):131. doi: 10.1186/s12882-023-03188-0
  • Davis S, Gralla J, Klem P, et al. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant. 2018;18(4):907–915. doi: 10.1111/ajt.14504
  • Gatault P, Kamar N, Büchler M, et al. Reduction of extended-release tacrolimus dose in Low-Immunological-Risk kidney transplant recipients increases Risk of rejection and appearance of donor-specific antibodies: a randomized study. Am J Transplant. 2017;17(5):1370–1379. doi: 10.1111/ajt.14109
  • Meziyerh S, van Gelder T, Kers J, et al. Tacrolimus and mycophenolic acid exposure are associated with Biopsy‐Proven acute rejection: a study to provide evidence for Longer‐Term target ranges. Clin Pharm Ther. 2023;114(1):192–200. doi: 10.1002/cpt.2915
  • Venkataramanan R, Shaw LM, Sarkozi L, et al. Clinical utility of monitoring tacrolimus blood concentrations in liver transplant patients. J Clin Pharmacol. 2001;41(5):542–551. doi: 10.1177/00912700122010429
  • Rodríguez-Perálvarez M, Germani G, Darius T, et al. Tacrolimus trough levels, rejection and renal impairment in liver transplantation: a systematic review and meta-analysis. Am J Transplant. 2012;12(10):2797–2814. doi: 10.1111/j.1600-6143.2012.04140.x
  • Lemaitre F, Monchaud C, Woillard J-B, et al. Synthèse des recommandations de l’International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) sur le suivi thérapeutique pharmacologique du tacrolimus. Therapies. 2020;75(6):681–685. doi: 10.1016/j.therap.2020.06.004
  • Lemaitre F, Tron C, Renard T, et al. Redefining therapeutic drug monitoring of tacrolimus in patients undergoing liver transplantation: a target trough concentration of 4–7 ng/mL during the first month after liver transplantation is safe and improves graft and renal function. Ther Drug Monit. 2020;42(5):671–678. doi: 10.1097/FTD.0000000000000779
  • Rodríguez-Perálvarez M, Germani G, Papastergiou V, et al. Early tacrolimus exposure after liver transplantation: relationship with moderate/severe acute rejection and long-term outcome. J hepatol. 2013;58(2):262–270. doi: 10.1016/j.jhep.2012.09.019
  • Rodríguez-Perálvarez M, Colmenero J, González A, et al. Cumulative exposure to tacrolimus and incidence of cancer after liver transplantation. Am J Transplant. 2022;22(6):1671–1682. doi: 10.1111/ajt.17021
  • Denton MD, Magee CC, Sayegh MH. Immunosuppressive strategies in transplantation. Lancet. 1999;353(9158):1083–1091. doi: 10.1016/S0140-6736(98)07493-5
  • Hardinger KL, Bohl DL, Schnitzler MA, et al. A randomized, prospective, pharmacoeconomic trial of tacrolimus versus cyclosporine in combination with thymoglobulin in renal transplant recipients. Transplantation. 2005;80(1):41–46. doi: 10.1097/01.TP.0000162980.68628.5A
  • Keown P, Niese D, behalf of the Internatial Sandimmun Neoral Study Group, o.n, on behalf of the International Sandimmun Neoral Study Group. Cyclosporine microemulsion increases drug exposure and reduces acute rejection without incremental toxicity in de novo renal transplantation. Kidney Int. 1998;54(3):938–944. doi: 10.1046/j.1523-1755.1998.00042.x
  • Barone G, Chang CT, Choc MG, et al. The pharmacokinetics of a microemulsion formulation of cyclosporine in primary renal allograft recipients: transplantation. Transplantation. 1996;61(6):875–880. doi: 10.1097/00007890-199603270-00005
  • Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol. 2007;2(2):374–384. doi: 10.2215/CJN.03791106
  • Vavic N, Ignjatovic L, Draskovic B, et al. Efikasnost terapijskog monitoringa ciklosporina odredjivanjem C2 i PIK0−4 tokom prva 24 meseca posle transplantacije bubrega. VSP. 2008;65(2):119–127. doi: 10.2298/VSP0802119V
  • Mahalati K, Belitsky P, Sketris I, et al. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation. 1999;68(1):55–62. doi: 10.1097/00007890-199907150-00011
  • Pescovitz MD, Barbeito R, for the Simulect US01 Study Group. Two-hour post-dose cyclosporine level is a better predictor than trough level of acute rejection of renal allografts: cyclosporine C2 in kidney transplantation. Clin Transplant. 2002;16(5):378–382. doi: 10.1034/j.1399-0012.2002.02036.x
  • Hardinger KL, Schnitzler MA, Koch MJ, et al. Cyclosporine minimization and cost reduction in renal transplant recipients receiving a C2-monitored, cyclosporine-based quadruple immunosuppressive regimen. Transplantation. 2004;78(8):1198–1203. doi: 10.1097/01.TP.0000137423.01887.7D
  • Stefoni S, Midtved K, Cole E, et al. Efficacy and safety outcomes among De novo renal transplant recipients managed by C2 monitoring of cyclosporine a microemulsion: results of a 12-month, randomized, multicenter study. Transplantation. 2005;79(5):577–583. doi: 10.1097/01.TP.0000153158.91683.34
  • Le Meur Y, Büchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7(11):2496–2503. doi: 10.1111/j.1600-6143.2007.01983.x
  • Starzl TE, Iwatsuki S, Shaw BW Jr., et al. Liver transplantation in the Ciclosporin Era. In: Borel J, editor. Chemical immunology and allergy [internet]. Basel: KARGER; 1986 [cited 2023 Aug 8]. p. 366–394. Available from: https://www.karger.com/Article/FullText/318481
  • Schrem H, Lück R, Becker T, et al. Update on liver transplantation using cyclosporine. In: Transplantation Proceedings. 2004. Vol. 36. p. 2525–2531.
  • Halloran PF, Helms LMH, Kung L, et al. The temporal profile of calcineurin inhibitor by cyclosporine in vivo1. Transplantation. 1999;68(9):1356–1361. doi: 10.1097/00007890-199911150-00023
  • Grant D, Kneteman N, Tchervenkov J, et al. Peak cyclosporine levels (Cmax) correlate with freedom from liver graft rejection: results of a prospective, randomized comparison of neoral and sandimmune for liver transplantation (NOF-8)1,2. Transplantation. 1999;67(8):1133–1137. doi: 10.1097/00007890-199904270-00008
  • Levy G, Thervet E, Lake J, et al. Patient management by Neoral C2 monitoring: an international consensus statement1. Transplantation. 2002;73(Supplement):S12–S18. doi: 10.1097/00007890-200205151-00003
  • Levy GA. C2 monitoring strategy for optimising cyclosporin immunosuppression from the Neoral?* formulation. BioDrugs. 2001;15(5):279–290. doi: 10.2165/00063030-200115050-00001
  • Tett SE, Saint-Marcoux F, Staatz CE, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplantation Rev. 2011;25(2):47–57. doi: 10.1016/j.trre.2010.06.001
  • Boudjema K, Camus C, Saliba F, et al. Reduced-dose tacrolimus with mycophenolate mofetil vs. standard-dose tacrolimus in liver transplantation: a randomized study. Am J Transplant. 2011;11(5):965–976. doi: 10.1111/j.1600-6143.2011.03486.x
  • van Gelder T, Silva HT, de Fijter JW, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86(8):1043–1051. doi: 10.1097/TP.0b013e318186f98a.
  • Gaston RS, Kaplan B, Shah T, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant. 2009;9(7):1607–1619. doi: 10.1111/j.1600-6143.2009.02668.x
  • Tredger JM, Brown NW, Adams J, et al. Monitoring mycophenolate in liver transplant recipients: toward a therapeutic range. Liver Transpl. 2004;10(4):492–502. doi: 10.1002/lt.20124
  • Sarvary E, Nemes B, Varga M, et al. Significance of mycophenolate monitoring in liver transplant recipients: toward the cut-off level. In: Transplantation Proceedings; Budapest, Hungary. 2012p. 2157–2161;44.
  • Saliba F, Rostaing L, Gugenheim J, et al. Corticosteroid-sparing and optimization of mycophenolic acid exposure in liver transplant recipients receiving mycophenolate mofetil and tacrolimus: a randomized, multicenter study. Transplantation. 2016;100(8):1705–1713. doi: 10.1097/TP.0000000000001228
  • Mao B, Zhang Q, Ma L, et al. Overview of research into mTOR inhibitors. Molecules. 2022;27(16):5295. doi: 10.3390/molecules27165295
  • Kahan B, Napoli K, Kelly P, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity: sirolimus concentration monitoring. Clin Transplan. 2000;14(2):97–109. doi: 10.1034/j.1399-0012.2000.140201.x
  • Gonwa T, Mendez R, Yang HC, et al. Randomized trial of tacrolimus in combination with sirolimus or mycophenolate mofetil in kidney transplantation: results at 6 months1. Transplantation. 2003;75(8):1213–1220. doi: 10.1097/01.TP.0000062837.99400.60
  • Vitko S, Wlodarczyk Z, Kyllönen L, et al. Tacrolimus combined with two different dosages of sirolimus in kidney transplantation: results of a multicenter study. Am J Transplant. 2006;6(3):531–538. doi: 10.1111/j.1600-6143.2005.01193.x
  • Stegall MD, Larson TS, Prieto M, et al. Kidney transplantation without calcineurin inhibitors using sirolimus. In: Transplantation Proceedings. 2003. p. S125–S127.
  • Flechner SM, Goldfarb D, Modlin C, et al. Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine1. Transplantation. 2002;74(8):1070–1076. doi: 10.1097/00007890-200210270-00002
  • Kovarik JM, Kaplan B, Tedesco Silva H, et al. Exposure-response relationships for everolimus in de novo kidney transplantation: defining a therapeutic range. Transplantation. 2002;73(6):920–925. doi: 10.1097/00007890-200203270-00016
  • Kovarik JM, Tedesco H, Pascual J, et al. Everolimus therapeutic concentration range defined from a prospective trial with reduced-exposure cyclosporine in De novo kidney transplantation. Ther Drug Monit. 2004;26(5):499–505. doi: 10.1097/00007691-200410000-00007
  • Levy G, Schmidli H, Punch J, et al. Safety, tolerability, and efficacy of everolimus in de novo liver transplant recipients: 12- and 36-month results. Liver Transpl. 2006;12(11):1640–1648. doi: 10.1002/lt.20707
  • Guo Y, Wang J, Wu W, et al. Incidence of ischemia reperfusion injury related biliary complications in liver transplantation: effect of different types of donors. In: Transplantation Proceedings. 2022. Vol. 54. p. 1865–1873.
  • Saliba F, Fischer L, de Simone P, et al. Association between renal dysfunction and major adverse cardiac events after liver transplantation: evidence from an international randomized trial of everolimus-based immunosuppression. Ann Transplant. 2018;23:751–757. doi: 10.12659/AOT.911030
  • Sterneck M, Kaiser GM, Heyne N, et al. Long-term follow-up of five yr shows superior renal function with everolimus plus early calcineurin inhibitor withdrawal in the PROTECT randomized liver transplantation study. Clin Transplant. 2016;30(6):741–748. doi: 10.1111/ctr.12744
  • De Simone P, Metselaar HJ, Fischer L, et al. Conversion from a calcineurin inhibitor to everolimus therapy in maintenance liver transplant recipients: a prospective, randomized, multicenter trial: everolimus with CNI discontinuation. Liver Transpl. 2009;15(10):1262–1269. doi: 10.1002/lt.21827
  • Fischer L, Klempnauer J, Beckebaum S, et al. A randomized, controlled study to assess the conversion from calcineurin-inhibitors to everolimus after liver transplantation—PROTECT. Am J Transplant. 2012;12(7):1855–1865. doi: 10.1111/j.1600-6143.2012.04049.x
  • Saliba F, Dharancy S, Lorho R, et al. Conversion to everolimus in maintenance liver transplant patients: a multicenter, retrospective analysis: everolimus in maintenance liver transplant patients. Liver Transpl. 2011;17(8):905–913. doi: 10.1002/lt.22292
  • Capron A, Haufroid V, Wallemacq P. Intra-cellular immunosuppressive drugs monitoring: a step forward towards better therapeutic efficacy after organ transplantation? Pharmacol Res. 2016;111:610–618. doi: 10.1016/j.phrs.2016.07.027
  • Lemaitre F, Antignac M, Verdier M-C, et al. Opportunity to monitor immunosuppressive drugs in peripheral blood mononuclear cells: where are we and where are we going? Pharmacol Res. 2013;74:109–112. doi: 10.1016/j.phrs.2013.06.003
  • Tron C, Ferrand-Sorre M-J, Querzerho-Raguideau J, et al. Volumetric absorptive microsampling for the quantification of tacrolimus in capillary blood by high performance liquid chromatography-tandem mass spectrometry. Journal Of Chromatography B. 2021;1165:122521. doi: 10.1016/j.jchromb.2020.122521
  • Koster RA, Alffenaar J-W, Botma R, et al. The relation of the number of hydrogen-bond acceptors with recoveries of immunosuppressants in DBS analysis. Bioanalysis. 2015;7(14):1717–1722. doi: 10.4155/bio.15.94
  • Zwart TC, Gokoel SRM, van der Boog PJM, et al. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device: immunosuppressant TDM using dried blood spots. Br J Clin Pharmacol. 2018;84(12):2889–2902. doi: 10.1111/bcp.13755
  • Haverals L, Roosens L, Wouters K, et al. Does the tacrolimus trough level adequately predict drug exposure in patients requiring a High tacrolimus dose? Transplant Direct. 2023;9(4):e1439. doi: 10.1097/TXD.0000000000001439
  • Couette A, Tron C, Golbin L, et al. Area under the curve of tacrolimus using microsampling devices: towards precision medicine in solid organ transplantation? Eur J Clin Pharmacol. 2023;79(11):1549–1556. doi: 10.1007/s00228-023-03566-5
  • Tron C, Lemaitre F. Perspective on the use of limited sampling strategies to assess drug exposure in the era of microsampling. Ther Drug Monit. 2021;43(6):812–813. doi: 10.1097/FTD.0000000000000923
  • Golbin L, Tron C, Franck B, et al. First experience of optimization of tacrolimus therapeutic drug monitoring in a patient cotreated with nirmatrelvir/ritonavir: how microsampling approach changes everything. Transplantation. 2023;107(2):e68–e69. doi: 10.1097/TP.0000000000004430
  • Lemaitre F, Hesselink DA. TDM is alive and kicking! Ther Drug Monit. 2023;45(1):3–5. doi: 10.1097/FTD.0000000000001034
  • Knight SR, Thorne A, Lo Faro ML. Donor-specific Cell-free DNA as a biomarker in solid organ transplantation: a systematic review. Transplantation. 2019;103(2):273–283. doi: 10.1097/TP.0000000000002482
  • van Rijn A, Roos R, Dekker F, et al. Torque teno virus load as marker of rejection and infection in solid organ transplantation – a systematic review and meta‐analysis. Rev Med Virol. 2023 [cited 2023 Aug 8];33(1). doi: 10.1002/rmv.2393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.