806
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Energy demand flexibility in buildings and district heating systems – a literature review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 241-263 | Received 24 Jul 2017, Accepted 30 Mar 2018, Published online: 20 Jun 2018

References

  • Alizadeh, M., Chang, T. H., & Scaglione, A. (2012). Grid integration of distributed renewables through coordinated demand response. Proceedings of the IEEE conference on Decision and Control (pp. 3666–3671). doi: 10.1109/CDC.2012.6426122
  • Alizadeh, M. I., Moghaddam, M. P., Amjady, N., Siano, P., & Sheikh-El-Eslami, M. K. (2016). Flexibility in future power systems with high renewable penetration: A review. Renewable and Sustainable Energy Reviews, 57, 1186–1193. doi: 10.1016/j.rser.2015.12.200
  • Arteconi, A., Hewitt, N. J., & Polonara, F. (2012). State of the art of thermal storage for demand-side management. Applied Energy, 93, 371–389. doi: 10.1016/j.apenergy.2011.12.045
  • Basecq, V., Michaux, G., Inard, C., & Blondeau, P. (2013). Short-term storage systems of thermal energy for buildings: A review. Advances in Building Energy Research, 7(1), 66–119. doi: 10.1080/17512549.2013.809271
  • Ben-Nakhi, A. E., & Mahmoud, M. A. (2017). Application of building-dynamics-based control strategies to improve air-conditioning performance in educational buildings. Advances in Building Energy Research, 11(2), 153–179. doi: 10.1080/17512549.2016.1174736
  • Bertsch, J., Growitsch, C., Lorenczik, S., & Nagl, S. (2012, October). Flexibility options in European electricity markets in high RES-E scenarios Study on behalf of the International Energy Agency (IEA) (p. 108).
  • Boehm, M., Dannecker, L., & Doms, A. (2012). Data management in the MIRABEL smart grid system. Proceedings of the 2012 joint EDBT/ICDT workshops (pp. 95–102). Berlin: Association for Computing Machinery. doi: 10.1145/2320765.2320797
  • Bruninx, K., Patteeuw, D., Delarue, E., Helsen, L., & D’haeseleer, W. (2013, May). Short-term demand response of flexible electric heating systems: The need for integrated simulations. 2013 10th international conference on the European Energy Market (EEM), (pp. 1–10). doi: 10.1109/EEM.2013.6607333
  • Capuder, T., & Mancarella, P. (2014). Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options. Energy, 71, 516–533. doi: 10.1016/j.energy.2014.04.097
  • Chen, X., Kang, C., O’Malley, M., Xia, Q., Bai, J., Liu, C., & Li, H. (2015). Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implications. IEEE Transactions on Power Systems, 30(4), 1848–1857. doi: 10.1109/TPWRS.2014.2356723
  • Cochran, J., Miller, M., Zinaman, O., Milligan, M., Arent, D., Palmintier, B., & Soonee, S. K. (2014). Flexibility in 21st century power systems. Retrieved from http://www.nrel.gov/docs/fy14osti/61721.pdf
  • Colella, F., Sciacovelli, A., & Verda, V. (2012). Numerical analysis of a medium scale latent energy storage unit for district heating systems. Energy, 45(1), 397–406. doi: 10.1016/j.energy.2012.03.043
  • Costanzo, G. T., Sossan, F., Marinelli, M., Bacher, P., & Madsen, H. (2013). Grey-box modeling for system identification of household refrigerators: A step toward smart appliances. IYCE 2013 – 4th international youth conference on energy. doi: 10.1109/IYCE.2013.6604197
  • De Coninck, R., & Helsen, L. (2016). Quantification of flexibility in buildings by cost curves – methodology and application. Applied Energy, 162, 653–665. doi: 10.1016/j.apenergy.2015.10.114
  • Denholm, P., & Hand, M. (2011). Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, 39(3), 1817–1830. doi: 10.1016/j.enpol.2011.01.019
  • D’hulst, R., Labeeuw, W., Beusen, B., Claessens, S., Deconinck, G., & Vanthournout, K. (2015). Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium. Applied Energy, 155, 79–90. doi: 10.1016/j.apenergy.2015.05.101
  • EBC Executive Committee Support Services Unit. (2014). Energy flexible buildings annex 67. Retrieved from www.iea-ebc.org/projects/ongoing-projects/ebc-annex-67/
  • EPRI – Smart Grid Resource Center. (n.d.). Retrieved from http://smartgrid.epri.com/
  • Grønnegaard, M., Morales, J. M., Zugno, M., Engberg, T., & Madsen, H. (2016). Economic valuation of heat pumps and electric boilers in the Danish energy system. Applied Energy, 167, 189–200. doi: 10.1016/j.apenergy.2015.08.115
  • Hajiah, A., & Krarti, M. (2012a). Optimal control of building storage systems using both ice storage and thermal mass – part I: Simulation environment. Energy Conversion and Management, 64, 499–508. doi: 10.1016/j.enconman.2012.02.016
  • Hajiah, A., & Krarti, M. (2012b). Optimal controls of building storage systems using both ice storage and thermal mass – part II: Parametric analysis. Energy Conversion and Management, 64, 509–515. doi: 10.1016/j.enconman.2012.02.020
  • Hasnain, S. M. (1998). Review on sustainable thermal energy storage technologies, part II: Cool thermal storage. Energy Conversion and Management, 39(11), 1139–1153. doi: 10.1016/S0196-8904(98)00024-7
  • Heier, J., Bales, C., & Martin, V. (2015). Combining thermal energy storage with buildings – a review. Renewable and Sustainable Energy Reviews, 42, 1305–1325. doi: 10.1016/j.rser.2014.11.031
  • Heller, A., Gianniou, P., Katsigiannis, E., Mortensen, A., & Hun Woo, K. (2014). Change in design targets for building energy towards smart cities. Proceedings of the 3rd international workshop on Design in Civil and Environmental Engineering (pp. 11–15). Retrieved from http://forskningsbasen.deff.dk/Share.external?sp=Se2dc3f8d-f104-46c2-843e-41c00626fe81&sp=Sdtu
  • Hewitt, N. J. (2012). Heat pumps and energy storage – the challenges of implementation. Applied Energy, 89(1), 37–44. doi: 10.1016/j.apenergy.2010.12.028
  • Kapoor, K., Powell, K., Cole, W., Kim, J., & Edgar, T. (2013). Improved large-scale process cooling operation through energy optimization. Processes, 1(3), 312–329. doi: 10.3390/pr1030312
  • Kara, E., Tabone, M., MacDonald, J., Callaway, D. S., & Kiliccote, S. (2014, October). Quantifying flexibility of residential thermostatically controlled loads for demand response: A data-driven approach. Proceedings of the 1st ACM conference on Embedded Systems for Energy-efficient Buildings (pp. 140–147). doi: 10.1145/2674061.2674082
  • Kensby, J., Trüschel, A., & Dalenbäck, J.-O. (2015). Potential of residential buildings as thermal energy storage in district heating systems – results from a pilot test. Applied Energy, 137, 773–781. doi: 10.1016/j.apenergy.2014.07.026
  • Khudhair, A. M., & Farid, M. M. (2004). A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Conversion and Management, 45(2), 263–275. doi: 10.1016/S0196-8904(03)00131-6
  • Kishore, S., & Snyder, L. V. (2010). Control mechanisms for residential electricity demand in SmartGrids. 2010 first IEEE international conference on Smart Grid Communications (SmartGridComm) (pp. 443–448). doi: 10.1109/smartgrid.2010.5622084
  • Kiviluoma, J., & Meibom, P. (2010). Flexibility from district heating to decrease wind power integration costs. Proceedings of the 12th international symposium on District Heating and Cooling, Tallin.
  • Kondziella, H., & Bruckner, T. (2016). Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies. Renewable and Sustainable Energy Reviews, 53, 10–22. doi: 10.1016/j.rser.2015.07.199
  • Lechtenböhmer, S., & Schüring, A. (2011). The potential for large-scale savings from insulating residential buildings in the EU. Energy Efficiency, 4, 257–270. doi: 10.1007/s12053-010-9090-6
  • Le Dréau, J., & Heiselberg, P. (2016). Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy, 111(1), 1–5. doi: 10.1016/j.energy.2016.05.076
  • Li, N., Chen, L., & Low, S. H. (2011). Optimal demand response based on utility maximization in power networks. Power and energy society general meeting (pp. 1–8). doi: 10.1109/PES.2011.6039082
  • Lofberg, J. (2004). YALMIP : A toolbox for modeling and optimization in MATLAB. 2004 IEEE international conference on Computer Aided Control Systems Design (pp. 284–289). doi: 10.1109/CACSD.2004.1393890
  • Lopes, R. A., Chambel, A., Neves, J., Aelenei, D., & Martins, J. (2015). ScienceDirect SHC 2015, international conference on solar heating and cooling for buildings and industry a literature review of methodologies used to assess the energy flexibility of buildings. Energy Proceedia, 1053–1058. doi: 10.1016/j.egypro.2016.06.274
  • Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785–807. doi: 10.1016/j.rser.2015.01.057
  • Masy, G., Georges, E., Verhelst, C., Lemort, V., & André, P. (2015). Smart grid energy flexible buildings through the use of heat pumps and building thermal mass as energy storage in the Belgian context. Science and Technology for the Built Environment, 21(6), 800–811. doi: 10.1080/23744731.2015.1035590
  • Mohsenian-Rad, A. H., Wong, V. W. S., Jatskevich, J., & Schober, R. (2010). Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. Innovative smart grid technologies conference, ISGT 2010 (pp. 1–6). doi: 10.1109/ISGT.2010.5434752
  • New York Independent System Operator. (2005). Blackout August 14, 2003 final report.
  • Norton, M., Vanderbroucke, H., Larsen, E., Dyke, C., Banares, S., Latour, C., & Vu Van, T. (2014). Demand side response policy paper. Retrieved from https://www.entsoe.eu/Documents/Publications/Position papers and reports/140915_DSR_Policy_web.pdf
  • Nuytten, T., Claessens, B., Paredis, K., Van Bael, J., & Six, D. (2013). Flexibility of a combined heat and power system with thermal energy storage for district heating. Applied Energy, 104, 583–591. doi: 10.1016/j.apenergy.2012.11.029
  • O’Connell, N., Pinson, P., Madsen, H., & O’Malley, M. (2016). Economic dispatch of demand response balancing through asymmetric block offers. IEEE Transactions on Power Systems, 31(4), 2999–3007. doi: 10.1109/TPWRS.2015.2475175
  • Oldewurtel, F., Sturzenegger, D., Andersson, G., Morari, M., & Smith, R. S. (2013). Towards a standardized building assessment for demand response. Proceedings of the IEEE conference on Decision and Control (pp. 7083–7088). doi: 10.1109/CDC.2013.6761012
  • Olsen, D. J., Matson, N., Sohn, M. D., Rose, C., Dudley, J., Goli, S., & Ma, S. (2013). Grid integration of aggregated demand response, part 1: Load availability profiles and constraints for the western interconnection. Lbnl – 6417E.
  • Pedrasa, M. A. A., Spooner, T. D., & MacGill, I. F. (2010). Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Transactions on Smart Grid, 1(2), 134–143. doi: 10.1109/TSG.2010.2053053
  • Petersen, M. K., Edlund, K., Hansen, L. H., Bendtsen, J., & Stoustrup, J. (2013). A taxonomy for modeling flexibility and a computationally efficient algorithm for dispatch in Smart Grids. 2013 American control conference (pp. 1150–1156). doi: 10.1109/ACC.2013.6579991
  • Pitts, A. (2008). Future proof construction – future building and systems design for energy and fuel flexibility. Energy Policy, 36(12), 4539–4543. doi: 10.1016/j.enpol.2008.09.015
  • Report on the grid disturbance on 30th July and grid disturbance on 31st July. (2012). Retrieved from http://www.cercind.gov.in/2012/orders/Final_Report_Grid_Disturbance.pdf
  • Reynders, G., Diriken, J., & Saelens, D. (2015). A generic quantification method for the active demand response potential of structural storage in buildings. 14th international conference of the International Building Performance Simulation Association (IBPSA), Hyderabad, India.
  • Salom, J., Marszal, A. J., Candanedo, J., Widén, J., Byskov Lindberg, K., & Sartori, I. (2014). Analysis of load match and grid interaction indicators in net zero energy buildings with high-resolution data. A Report of Subtask A IEA Task 40/Annex 52.
  • Schaber, K., Steinke, F., & Hamacher, T. (2013). Managing temporary oversupply from renewables efficiently: Electricity storage versus energy sector coupling in Germany. International energy workshop 2013 (pp. 1–22), Paris, France.
  • Schmidt, D. (2014). EBC ANNEX 64 LowEx communities; optimised performance of community energy supply systems with exergy principles – annex text.
  • Scholz, D., & Müsgens, F. (2015). Increasing flexibility of combined heat and power plants with power-to-heat. 12th international conference on the European Energy Market (EEM) (pp. 1–5). doi: 10.1109/EEM.2015.7216771
  • Six, D., Desmedt, J., Van Bael, J., & Vanhoudt, D. (2011). Exploring the flexibility potential of residential heat pumps combined with thermal energy storage for smart grids. 21st international conference on Electricity Distribution, Frankfurt, Germany.
  • Sturzenegger, D., Gyalistras, D., Morari, M., & Smith, R. S. (2012). Semi-automated modular modeling of buildings for model predictive control. Proceedings of the Fourth ACM workshop on Embedded Sensing Systems for Energy-efficiency in Buildings - BuildSys ‘12 (pp. 99–106). doi: 10.1145/2422531.2422550
  • Sturzenegger, D., Gyalistras, D., Morari, M., & Smith, R. S. (2016). Model predictive climate control of a Swiss office building: Implementation, results, and cost-benefit analysis. IEEE Transactions on Control Systems Technology, 24(1), 1–12. doi: 10.1109/TCST.2015.2415411
  • Talebi, B., Mirzaei, P. A., Bastani, A., & Haghighat, F. (2016). A Review of District Heating Systems: Modeling and Optimization. Frontiers in Built Environment, 2, 1–14. doi: 10.3389/fbuil.2016.00022
  • UCTE. (2004). Final report of the investigation committee on the 28 September 2003 blackout in Italy.
  • Valsomatzis, E., Hose, K., Pedersen, T. B., & Šikšnys, L. (2015). Measuring and comparing energy flexibilities. Workshop proceedings of the EDBT/ICDT 2015 joint conference. Brussels: CEUR-WS. Retrieved from http://ceur-ws.org/Vol-1330/paper-14.pdf
  • Varmelast. (n.d.). Varmelast.dk. Retrieved from http://www.varmelast.dk
  • Verda, V., & Colella, F. (2011). Primary energy savings through thermal storage in district heating networks. Energy, 36(7), 4278–4286. doi: 10.1016/j.energy.2011.04.015
  • Weiß, T., Fulterer, A. M., & Knotzer, A. (2017). Energy flexibility of domestic thermal loads – a building typology approach of the residential building stock in Austria. Advances in Building Energy Research, 2549, 1–16. doi: 10.1080/17512549.2017.1420606
  • Yang, X., Li, H., & Svendsen, S. (2016). Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating. Energy, 109, 248–259. doi: 10.1016/j.energy.2016.04.109
  • Yang, Y., Wu, K., Yan, X., Gao, J., & Long, H. (2015). The large-scale wind power integration using the integrated heating load and heating storage control. 2015 IEEE Eindhoven PowerTech, PowerTech 2015. doi:10.1109/PTC.2015.7232444.
  • Zalba, B., Marın, J. M., Cabeza, L. F., & Mehling, H. (2003). Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251–283. doi: 10.1016/S1359-4311(02)00192-8
  • Zhao, Z., Verbic, G., & Fiorito, F. (2014, October). Investigating thermal inertia in lightweight buildings for demand response. Proceedings of 2014 Australasian Universities Power Engineering Conference, AUPEC 2014 (pp. 1–6). doi: 10.1109/AUPEC.2014.6966612
  • Zhou, D., Zhao, C. Y., & Tian, Y. (2012). Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy, 92, 593–605. doi: 10.1016/j.apenergy.2011.08.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.