53
Views
0
CrossRef citations to date
0
Altmetric
Articles

An experimental methodology for the calibration of indoor building environment models using thermal point clouds and CFD simulation

, , &
Pages 261-294 | Received 06 Feb 2024, Accepted 17 May 2024, Published online: 06 Jun 2024

References

  • Adán, A., López-Rey, A., & Ramón, A. (2023). Robot for thermal monitoring of buildings. Automation in Construction, 154, 105009. https://doi.org/10.1016/j.autcon.2023.105009
  • Adán, A., Pérez, V., Ramón, A., & Castilla, F. J. (2023). Correction of temperature from infrared cameras for more precise As-Is 3D thermal models of buildings. Applied Sciences, 13(11), 6779. https://doi.org/10.3390/app13116779
  • Adán, A., Pérez, V., Vivancos, J. L., Aparicio-Fernández, C., & Prieto, S. A. (2021). Proposing 3D thermal technology for heritage building energy monitoring. Remote Sensing, 13(8), 1537. https://doi.org/10.3390/rs13081537
  • Adan, A., Prado, T., Prieto, S. A., & Quintana, B. (2017). Fusion of thermal imagery and LiDAR data for generating TBIM models. In Proceedings of IEEE Sensors, Institute of Electrical and Electronics Engineers Inc., pp. 1–3. https://doi.org/10.1109/ICSENS.2017.8234261.
  • Adán, A., Ramón, A., Vivancos, J. L., Vilar, A., & Aparicio-Fernández, C. (2023). Automatic generation of as-is BEM models of buildings. Journal of Building Engineering, 73, 106865. https://doi.org/10.1016/j.jobe.2023.106865
  • AIAA. (1998). Guide: Guide for the verification and validation of computational fluid dynamics simulations (AIAA G-077-1998(2002)). American Institute of Aeronautics and Astronautics, Inc.. https://doi.org/10.2514/4.472855.001.
  • Alsheekh, M. (2021). Numerical and experimental study of the air- conditioning system of a large sports hall. International Journal of Creative Research Thoughts, 9(1), 3033–3050.
  • ANSI/ASHRAE. (2002). ASHRAE guideline 14-2002 measurement of energy and demand savings.
  • Arnfield, A. J. (2022). Koppen climate classification | Definition, System, & Map | Britannica. Encyclopedia Britannica. Retrieved November 22, 2022. https://www.britannica.com/science/Koppen-climate-classification
  • Aryal, P., & Leephakpreeda, T. (2015). CFD analysis on thermal comfort and energy consumption effected by partitions in air-conditioned building. Energy Procedia, 183–188. https://doi.org/10.1016/j.egypro.2015.11.459
  • ASHRAE. (2021). ASHRAE handbook – fundamentals.
  • ASHRAE Guideline 14. (2014). Measurement of energy, demand, and water savings. ASHRAE Guideline, 4, 1–150.
  • Baba, F. M., Ge, H., Zmeureanu, R., & Wang, L. (2022). Calibration of building model based on indoor temperature for overheating assessment using genetic algorithm: Methodology, evaluation criteria, and case study. Building and Environment, 207, 108518. https://doi.org/10.1016/j.buildenv.2021.108518
  • Bardina, J. E., Huang, P. G., & Coakley, T. J. (1997). Turbulence modeling validation. 28th Fluid Dynamics Conference, no. April, 1997, https://doi.org/10.2514/6.1997-2121.
  • Bayomi, N., Nagpal, S., Rakha, T., & Fernandez, J. E. (2021). Building envelope modeling calibration using aerial thermography. Energy and Buildings, 233, 110648. https://doi.org/10.1016/j.enbuild.2020.110648
  • Blocken, B., Stathopoulos, T., & van Beeck, J. P. A. J. (2016). Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Building and Environment, 100, 50–81. https://doi.org/10.1016/j.buildenv.2016.02.004
  • Cacabelos, A., Eguía, P., Febrero, L., & Granada, E. (2017). Development of a new multi-stage building energy model calibration methodology and validation in a public library. Energy and Buildings, 146, 182–199. https://doi.org/10.1016/j.enbuild.2017.04.071
  • Casey, M., & Wintergerste, T. (2000). ERCOFTAC best practice guidelines for industrial computational fluid dynamics. Ercoftac Brussels, p. 82.
  • Choi, Y., Yoon, S., Park, C.-Y., & Lee, K.-C. (2023). In-situ observation and calibration in building digitalization: Comparison of intrusive and nonintrusive approaches. Automation in Construction, 145, 104648. https://doi.org/10.1016/j.autcon.2022.104648
  • Chong, A., Gu, Y., & Jia, H. (2021). Calibrating building energy simulation models: A review of the basics to guide future work. Energy and Buildings, 253, 111533. https://doi.org/10.1016/j.enbuild.2021.111533
  • Chong, A., Xu, W., Chao, S., & Ngo, N. T. (2019). Continuous-time Bayesian calibration of energy models using BIM and energy data. Energy and Buildings, 194, 177–190. https://doi.org/10.1016/j.enbuild.2019.04.017
  • Cichowicz, R., & Lewandowska, A. (2017). The analysis of selected parameters of thermal comfort in the classrooms using CFD technique. World Sci News, 73(1), 72–79.
  • Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 123–141. https://doi.org/10.1016/j.rser.2014.05.007
  • Cortés, M., Fazio, P., Rao, J., Bustamante, W., & Vera, S. (2014). CFD modeling of basic convection cases in enclosed environments: Needs of CFD beginners to acquire skills and confidence on CFD modeling. Revista Ingenieria de Construccion, 29(1), 22–45. https://doi.org/10.4067/S0718-50732014000100002
  • Dassault Systems. (2022). SOLIDWORKS Flow Simulation | SOLIDWORKS. Retrieved November 17, 2022. https://www.solidworks.com/product/solidworks-flow-simulation
  • DesignBuilder Software. (2008). DesignBuilder Simulation + CFD Training Guide. p. 162, 2008. http://www.designbuilder.co.uk/downloadsv1/doc/DesignBuilder-Simulation-Training-Manual.pdf
  • Designing Buildings. (2022). Computational Fluid Dynamics for Engineers. Retrieved November 17, 2022. https://www.designingbuildings.co.uk/wiki/Computational_fluid_dynamics_for_buildings
  • Energy Efficient Design Software | Green Design | Sefaira. (2022). Retrieved November 17, 2022. https://www.sketchup.com/products/sefaira
  • EQUA. (2022). IDA ICE - Simulation Software | EQUA. Retrieved November 17, 2022. https://www.equa.se/en/ida-ice
  • Federal Energy Management Program. (2015). M&V guidelines: measurement and verification for performance-based contracts -Version 4.0.
  • González, V. G., Ruiz, G. R., & Bandera, C. F. (2020). Empirical and comparative validation for a building energy model calibration methodology. Sensors, 20(17), 1–29. https://doi.org/10.1109/JSEN.2020.3010656
  • Gucyeter, B.. (2018). Calibration of a building energy performance simulation model via monitoring data. In 2018 Building Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA-USA, Chicago, IL, September 26-28, 2018.
  • Guo, J., Liu, R., Xia, T., & Pouramini, S. (2021). Energy model calibration in an office building by an optimization-based method. Energy Reports, 7, 4397–4411. https://doi.org/10.1016/j.egyr.2021.07.031
  • Hajdukiewicz, M., Geron, M., & Keane, M. M. (2013). Calibrated CFD simulation to evaluate thermal comfort in a highly-glazed naturally ventilated room. Building and Environment, 70, 73–89. https://doi.org/10.1016/j.buildenv.2013.08.020
  • Hensen, J. L. M., & Lamberts, R. (2012). Building performance simulation for design and operation (Vol. 9780203891). https://doi.org/10.4324/9780203891612.
  • Hou, D., Hassan, I. G., & Wang, L. (2021). Review on building energy model calibration by Bayesian inference. Renewable and Sustainable Energy Reviews, 143, 110930. https://doi.org/10.1016/j.rser.2021.110930
  • IPMVP Committee. (2001). International performance measurement and verification protocol: Concepts and options for determining energy and water savings, Volume I.
  • Jadhav, S., Kumar, P., Chavan, R., & Goen, A. (2022). Predicting occupant thermal comfort for multiple air-side systems and seasonal scenarios using Autonomous HVAC CFD. In Proceedings of Building Simulation 2021: 17th Conference of IBPSA. https://doi.org/10.26868/25222708.2021.30945.
  • Ji, L., Shu, C., Hou, D., Laouadi, A., Wang, L., & Lacasse, M. (2022). Predicting indoor air temperatures by calibrating building thermal model with coupled airflow networks. in REHVA 14th HVAC World Congress.
  • Kang, K. Y., Wang, X., Wang, J., Xu, S., Shou, W., & Sun, Y. (2022). Utility of BIM-CFD integration in the design and performance analysis for buildings and infrastructures of architecture, engineering and construction industry. Buildings, 12(5), 651. https://doi.org/10.3390/buildings12050651
  • Koo, J., & Yoon, S. (2022). In-situ sensor virtualization and calibration in building systems. Applied Energy, 325, 119864. https://doi.org/10.1016/j.apenergy.2022.119864
  • Lam, K. P., Zhao, J., Ydstie, E. B., Wirick, J., Qi, M., & Park, J. (2014). An energyplus whole building energy model calibration method for office buildings using occupant behavior data mining and empirical data, in 2014 ASHRAE/IBPSA-USA Building Simulation Conference, pp. 160–167.
  • Liu, S., Pan, W., Zhao, X., Zhang, H., Cheng, X., Long, Z., & Chen, Q. (2018). Influence of surrounding buildings on wind flow around a building predicted by CFD simulations. Building and Environment, 140, 1–10. https://doi.org/10.1016/j.buildenv.2018.05.011
  • Lyu, Y., Pan, Y., Yang, T., Li, Y., Huang, Z., & Kosonen, R. (2021). An automated process to calibrate building energy model based on schedule tuning and signed directed graph method. Journal of Building Engineering, 35(2020), 102058. https://doi.org/10.1016/j.jobe.2020.102058
  • Ministerio de Fomento. (2016). Documento de bases para la actualización del Documento Básico DB-HE, no. diciembre 2016. pp. 1–13
  • Ministerio de Transportes, Movilidad y Agenda Urbana. (2022). Documento Básico HE, Ahorro de Energía, Código Técnico de la Edificación, anejo B, pp. 46. https://www.codigotecnico.org/pdf/Documentos/HE/DcmHE.pdf
  • Naboni, E., Lee, D. S. H., & Fabbri, K. (2017). Thermal Comfort-CFD maps for Architectural Interior Design. In Procedia Engineering, No longer published by Elsevier, pp. 110–117. https://doi.org/10.1016/j.proeng.2017.04.170
  • Neymark, J., Judkoff, R., Knabe, G., Le, H.-T., Dürig, M., Glass, A., & Zweifel, G. (2002). Applying the building energy simulation test (BESTEST) diagnostic method to verification of space conditioning equipment models used in whole-building energy simulation programs. Energy and Buildings, 34(9), 917–931. https://doi.org/10.1016/S0378-7788(02)00072-5
  • NPARC. (2000). {CFD} Verification and Validation, NPARC Alliance.
  • Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences, 38(3), 209–272. https://doi.org/10.1016/S0376-0421(02)00005-2
  • Pachano, J. E., & Bandera, C. F. (2021). Multi-step building energy model calibration process based on measured data. Energy and Buildings, 252, 111380. https://doi.org/10.1016/j.enbuild.2021.111380
  • Pachano, J. E., Peppas, A., & Bandera, C. F. (2022). Seasonal adaptation of VRF HVAC model calibration process to a mediterranean climate. Energy and Buildings, 261, 111941. https://doi.org/10.1016/j.enbuild.2022.111941
  • Pérez-Andreu, V., Castilla-Pascual, F. J., Adán-Oliver, A., Quintana-Galera, B., & Prieto-Ayllón, S. A. (2019). Point clouds 5D management for the energy analysis of buildings. In 23th AEIPRO, pp. 1584–1594.
  • Ramón, A., Adán, A., & Javier Castilla, F. (2022). Thermal point clouds of buildings: A review. Energy and Buildings, 274(01), 112425. https://doi.org/10.1016/j.enbuild.2022.112425
  • REAL DECRETO. (2007). REAL DECRETO 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios. pp. 35931–35984.
  • Real Decreto. (2013). Real Decreto 238/2013, de 5 de abril, por el que se modifican determinados artículos e instrucciones técnicas del Reglamento de Instalaciones Térmicas en los Edificios, aprobado por Real Decreto 1027/2007, de 20 de julio. (BOE núm. 89, de 13 de abril de 2, no. 89. pp. 27563–27593.
  • Reddy, T. A. (2006). Literature review on calibration of building energy simulation programs: Uses, problems, procedures, uncertainty, and tools. Ashrae Transactions, 112(4844), 1–15.
  • Rincón Casado, A., Hajdukiewicz, M., Sánchez de la Flor, F., & Rodríguez Jara, E. (2020). Calibration methodology for CFD models of rooms and buildings with mechanical ventilation from experimental results. Computational Fluid Dynamics Simulations. https://doi.org/10.5772/intechopen.89848
  • Rubner, Y., Tomasi, C., & Guibas, L. J. (1998). A metric for distributions with applications to image databases.
  • Ruiz, G. R., & Bandera, C. F. (2017). Validation of calibrated energy models: Common errors. Energies, 10(10). https://doi.org/10.3390/en10101587
  • Shree, V., Marwaha, B. M., & Awasthi, P. (2019). Assessment of indoor air quality in buildings using CFD: A brief review. International Journal of Mathematical, Engineering and Management Sciences, 4(5), 1154–1168. https://doi.org/10.33889/IJMEMS.2019.4.5-091
  • Theodore, G. (2022). Ladybug tools | Butterfly. https://www.food4rhino.com. Retrieved November 17, 2022. https://www.ladybug.tools/butterfly.html
  • Triana, W. S. T. (2017). Comparación de metodologías de simulación energética caso de estudio: simulación térmica para centro de bienestar animal.
  • Xu, F., Yang, J., & Zhu, X. (2020). A comparative study on the difference of CFD simulations based on a simplified geometry and a more refined BIM based geometry. AIP Advances, 10(12), 125318. https://doi.org/10.1063/5.0031907
  • Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T., & Shirasawa, T. (2007). Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. Journal of Wind Engineering and Industrial Aerodynamics, 95(9–11), 1551–1578. https://doi.org/10.1016/j.jweia.2007.02.023
  • Zhan, S., Wichern, G., Laughman, C., Chong, A., & Chakrabarty, A. (2022). Calibrating building simulation models using multi-source datasets and meta-learned Bayesian optimization. Energy and Buildings, 270, 112278. https://doi.org/10.1016/j.enbuild.2022.112278
  • Zhang, Q., & Canosa, R. L. (2014). A comparison of histogram distance metrics for content-based image retrieval. Q. Lin, J. P. Allebach, and Z. Fan, Eds., p. 90270O. https://doi.org/10.1117/12.2042359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.