4,256
Views
55
CrossRef citations to date
0
Altmetric
Original Articles

Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever

, &
Pages 11-40 | Received 19 Mar 2012, Accepted 16 Sep 2012, Published online: 25 Oct 2012

References

  • B. Adams, and M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model, Epidemics 2(1) (2010), pp. 1–10 doi: 10.1016/j.epidem.2010.01.001
  • S.F. Andriamandimby, A.E. Randrianarivo-Solofoniaina, E.M. Jeanmaire, L. Ravololomanana, L.T. Razafimanantsoa, T. Rakotojoelinandrasana, J. Razainirina, J. Hoffmann, J.P. Ravalohery, J.T. Rafisandratantsoa, P.E. Rollin, and J.M. Reynes, Rift Valley fever during rainy seasons, Madagascar, 2008 and 2009, Emerg. Infect. Dis. 16(6) (2010), pp. 963–970 doi: 10.3201/eid1606.091266
  • A. Anyamba, J.P. Chretien, J. Small, C.J. Tucker, P.B. Formenty, J.H. Richardson, S.C. Britch, D.C. Schnabel, R.L. Erickson, and K.J. Linthicum, Prediction of a Rift Valley fever outbreak, Proc. Natl Acad. Sci. 106(3) (2009), pp. 955–959 doi: 10.1073/pnas.0806490106
  • L. Arriola, Sensitivity analysis for quantifying uncertainty in mathematical models, Mathematical and Statistical Estimation Approaches in Epidemiology, G. Chowell, J.M. Hyman, L.M.A. Bettencourt, and C. Castillo-Chavez, eds., Springer, New York, 2009, pp. 195–248
  • Y. Ba, D. Diallo, C. M.F. Kebe, I. Dia, and M. Diallo, Aspects of bioecology of two Rift Valley fever virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae), J. Med. Entomol. 42(5) (2005), pp. 739–750 doi: 10.1603/0022-2585(2005)042[0739:AOBOTR]2.0.CO;2
  • H.H. Balkhy, and Z.A. Memish, Rift Valley fever: An uninvited zoonosis in the Arabian peninsula, Int. J. Antimicrob. Agents 21(2) (2003), pp. 153–157 doi: 10.1016/S0924-8579(02)00295-9
  • B.H. Bird, T.G. Ksiazek, S.T. Nichol, and N.J. MacLachlan, Rift Valley fever virus, J. Am. Vet. Med. Assoc. 234(7) (2009), pp. 883–893 doi: 10.2460/javma.234.7.883
  • V. Chevalier, S. Rocque, T. Baldet, L. Vial, and F. Roger, Epidemiological processes involved in the emergence of vector-borne diseases: West Nile fever, Rift Valley fever, Japanese encephalitis and Crimean–Congo haemorrhagic fever, Rev. Sci. Tech. – Office International des Epizooties 23(2) (2004), pp. 535–556
  • N. Chitnis, J.M. Cushing, and J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math. 67(1) (2006), pp. 24–45 doi: 10.1137/050638941
  • N. Chitnis, J.M. Hyman, and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70(5) (2008), pp. 1272–1296 doi: 10.1007/s11538-008-9299-0
  • J.M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conference Series in Applied Mathematics Vol. 71, SIAM, Philadelphia, PA, 1998.
  • F.G. Davies, and V. Martin, Recognizing Rift Valley Fever, FAO, Rome, 2003.
  • J. M.O. Depinay, C.M. Mbogo, G. Killeen, B. Knols, J. Beier, J. Carlson, J. Dushoff, P. Billingsley, H. Mwambi, J. Githure, A.M. Toure, and F.E. McKenzie, A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission, Malar. J. 3(1) (2004), pp. 29 doi: 10.1186/1475-2875-3-29
  • O. Diekmann, J. A.P. Heesterbeek, J. A.J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28(4) (1990), pp. 365–382 doi: 10.1007/BF00178324
  • C. Favier, K. Chalvet-Monfray, P. Sabatier, R. Lancelot, D. Fontenille, and M.A. Dubois, Rift Valley fever in West Africa: The role of space in endemicity, Trop. Med. Int. Health 11(12) (2006), pp. 1878–1888 doi: 10.1111/j.1365-3156.2006.01746.x
  • H.D. Gaff, D.M. Hartley, and N.P. Leahy, An epidemiological model of Rift Valley fever, Electron. J. Differ. Equ. 2007(115) (2007), pp. 1–12
  • H. Gaff, C. Burgess, J. Jackson, T. Niu, Y. Papelis, and D. Hartley, Mathematical model to assess the relative effectiveness of Rift Valley fever countermeasures, Int. J. Artif. Life Res. 2(2) (2011), pp. 1–18 doi: 10.4018/jalr.2011040101
  • W.A. Geering, F.G. Davies, and V. Martin, Preparation of Rift Valley Fever Contingency Plans, Food & Agriculture Organization of the UN (FAO), Rome, 2002.
  • G.H. Gerdes, Rift Valley fever, Rev. Sci. Tech. (International Office of Epizootics) 23(2) (2004), pp. 613–623
  • H. Gong, A. DeGaetano, and L.C. Harrington A climate based mosquito population model, Proceedings of the World Congress on Engineering and Computer Science 2007, WCECS 2007, San Francisco, CA, 24–26 October 2007.
  • G.R. Hosack, P.A. Rossignol, and P. Van Den Driessche, The control of vector-borne disease epidemics, J. Theor. Biol. 255(1) (2008), pp. 16–25 doi: 10.1016/j.jtbi.2008.07.033
  • J.M. Hyman, and J. Li, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Math. Biosci. 167(1) (2000), pp. 65–86 doi: 10.1016/S0025-5564(00)00025-0
  • P.G. Jupp, A. Kemp, A. Grobbelaar, P. Leman, F.J. Burt, A.M. Alahmed, D. Mujalli, M. Khamees, and R. Swanepoel, The 2000 epidemic of Rift Valley fever in Saudi Arabia: Mosquito vector studies, Med. Vet. Entomol. 16(3) (2002), pp. 245–252 doi: 10.1046/j.1365-2915.2002.00371.x
  • T.R. Kasari, D.A. Carr, T.V. Lynn, and J.T. Weaver, Evaluation of pathways for release of Rift Valley fever virus into domestic ruminant livestock, ruminant wildlife, and human populations in the continental United States, J. Am. Vet. Med. Assoc. 232(4) (2008), pp. 514–529 doi: 10.2460/javma.232.4.514
  • V. Martin, V. Chevalier, P. Ceccato, A. Anyamba, L. De Simone, J. Lubroth, S. de La Rocque, and J. Domenech, The impact of climate change on the epidemiology and control of Rift Valley fever, Rev. Sci. Tech. – Office International des Epizooties 27 (2008), pp. 413–426
  • S.C. Mpeshe, H. Haario, and J.M. Tchuenche, A mathematical model of Rift Valley fever with human host, Acta Biotheor. 59 (2011), 3–4pp. 231–250 doi: 10.1007/s10441-011-9132-2
  • R.M. Murithi, P. Munyua, P.M. Ithondeka, J.M. Macharia, A. Hightower, E.T. Luman, R.F. Breiman, and M.K. Njenga, Rift Valley fever in Kenya: History of epizootics and identification of vulnerable districts, Epidemiol. Infect. 139(3) (2011), pp. 372–380 doi: 10.1017/S0950268810001020
  • E.J. Muturi, S. Muriu, J. Shililu, J.M. Mwangangi, B.G. Jacob, C. Mbogo, J. Githure, and R.J. Novak, Blood-feeding patterns of Culex quinquefasciatus and other culicines and implications for disease transmission in Mwea rice scheme, Kenya, Parasitol. Res. 102(6) (2008), pp. 1329–1335 doi: 10.1007/s00436-008-0914-7
  • P.I. Ndiaye, D.J. Bicout, B. Mondet, and P. Sabatier, Rainfall triggered dynamics of Aedes mosquito aggressiveness, J. Theor. Biol. 243(2) (2006), pp. 222–229 doi: 10.1016/j.jtbi.2006.06.005
  • P.I. Ndione, J.P. Besancenot, J.P. Lacaux, and P. Sabatier, Environnement et épidémiologie de la fièvre de la vallée du Rift (FVR) dans le bassin inférieur du fleuve Sénégal, Environnement, Risques & Santé 2(3) (2003), pp. 176–182
  • M.G. Neubert, and H. Caswell, Alternatives to resilience for measuring the responses of ecological systems to perturbations, Ecology 78(3) (1997), pp. 653–665 doi: 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
  • M. Pépin, M. Bouloy, B.H. Bird, A. Kemp, and J. Paweska, Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention, Vet. Res. 41 (2010), pp. 61 doi: 10.1051/vetres/2010033
  • P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), pp. 487–513 doi: 10.1016/0022-1236(71)90030-9
  • W.S. Romoser, M.N. Oviedo, K. Lerdthusnee, L.A. Patrican, M.J. Turell, D.J. Dohm, K.J. Linthicum, and C.L. Bailey, Rift Valley fever virus-infected mosquito ova and associated pathology: Possible implications for endemic maintenance, Res. Rep. Trop. Med. 2 (2011), pp. 121–127 doi: 10.2147/RRTM.S13947
  • P.A. Rossignol, J.M. Ribeiro, M. Jungery, M.J. Turell, A. Spielman, and C.L. Bailey, Enhanced mosquito blood-finding success on parasitemic hosts: Evidence for vector-parasite mutualism, Proc. Natl Acad. Sci. USA 82(22) (1985), pp. 7725–7727 doi: 10.1073/pnas.82.22.7725
  • J. Shaman, and J.F. Day, Reproductive phase locking of mosquito populations in response to rainfall frequency, PloS One 2(3) (2007), pp. e331 doi: 10.1371/journal.pone.0000331
  • M.J. Turell, C.A. Rossi, and C.L. Bailey, Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus, Am. J. Trop. Med. Hyg. 34(6) (1985), pp. 1211–1218
  • M.J. Turell, S.M. Presley, A.M. Gad, S.E. Cope, D.J. Dohm, J.C. Morrill, and R.R. Arthur, Vector competence of Egyptian mosquitoes for Rift Valley fever virus, Am. J. Trop. Med. Hyg. 54(2) (1996), pp. 136–139
  • M.J. Turell, K.J. Linthicum, L.A. Patrican, F.G. Davies, A. Kairo, and C.L. Bailey, Vector competence of selected African mosquito (diptera: Culicidae) species for Rift Valley fever virus, J. Med. Entomol. 45(1) (2008), pp. 102–108 doi: 10.1603/0022-2585(2008)45[102:VCOSAM]2.0.CO;2
  • P. Van den Driessche, and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180(1) (2002), pp. 29–48 doi: 10.1016/S0025-5564(02)00108-6
  • C. Vignolles, J.P. Lacaux, Y.M. Tourre, G. Bigeard, J.A. Ndione, and M. Lafaye, Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: Dynamics and risk mapping, Geospatial Health 3(2) (2009), pp. 211–220
  • L. Xue, H.M. Scott, L.W. Cohnstaedt, and C. Scoglio, A network-based meta-population approach to model Rift Valley fever epidemics, J. Theor. Biol. 306 (2012), pp. 129–144 doi: 10.1016/j.jtbi.2012.04.029