2,807
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Heterogeneity in multiple transmission pathways: modelling the spread of cholera and other waterborne disease in networks with a common water source

, &
Pages 254-275 | Received 05 Apr 2013, Accepted 02 Oct 2013, Published online: 01 Nov 2013

REFERENCES

  • F.R. Adler, The effects of averaging on the basic reproduction ratio, Math. Biosci. 111 (1992), pp. 89–98. doi: 10.1016/0025-5564(92)90080-G
  • M.J. Albert, M. Neira, and Y. Motarjemi, The role of food in the epidemiology of cholera, World Health Stat. Q 50 (1997), pp. 111–118.
  • L.J.S. Allen and G.E. Lahodny, Extinction thresholds in deterministic and stochastic epidemic models, J. Biol. Dyn. 6(2) (2012), pp. 590–611. doi: 10.1080/17513758.2012.665502
  • D. Butler, Cholera tightens grip on Haiti, Nature 468 (2010), pp. 483–484. doi: 10.1038/468483a
  • R.R. Colwell, Global climate and infectious disease: The cholera paradigm, Science 274 (1996), pp. 2025–2031. doi: 10.1126/science.274.5295.2025
  • A. Cravioto, C. Lanata, D.S. Lantagne, and G.B. Nair, Final report of the independent panel of experts on the cholera outbreak in Haiti, 2011. Available at http://www.un.org/News/dh/infocus/haiti/UN-cholera-report-final.pdf
  • O. Diekmann, and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation, Wiley, New York, 2000.
  • J. Dushoff, and S. Levin, The effects of population heterogeneity on disease invasion, Math. Biosci. 128 (1995), pp. 25–40. doi: 10.1016/0025-5564(94)00065-8
  • M.C. Eisenberg, G. Kujbida, A.R. Tuite, D.N. Fisman, and J.H. Tien, Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches, Epidemics (2013). Available at http://dx.doi.org/10.1016/j.epidem.2013.09.004
  • M.C. Eisenberg, S.L. Robertson, and J.H. Tien, Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease, J. Theor. Biol. 324(7) (2013), pp. 84–102. doi: 10.1016/j.jtbi.2012.12.021
  • M.C. Eisenberg, Z. Shuai, J.H. Tien, and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci. (2013). Available at http://www.sciencedirect.com/science/article/pii/S0025556413001880
  • N.H. Gaffga, R.V. Tauxe, and E.D. Mintz, Cholera: A new homeland in Africa? Am. J. Trop. Med. Hyg. 77(4) (2007), pp. 705–713.
  • S. Giebultowicz, M. Ali, M. Yunus, and M. Emch, A comparison of spatial and social clustering of cholera in Matlab, Bangladesh, Health Place 17 (2011), pp. 490–499. doi: 10.1016/j.healthplace.2010.12.004
  • R. Glass, Endemic cholera in rural Bangladesh, 1066–1980, Am. J. Epidemiol. 116(6) (1982), pp. 959–970.
  • K.T. Goh, S.H. Teo, S. Lam, and M.K. Ling, Person-to-person transmission of cholera in a psychiatric hospital, J. Infect. 20(3) (1990), pp. 193–200.
  • D. Hartley, J. Morris, and D. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3 (2006), pp. 63–69. doi: 10.1371/journal.pmed.0030007
  • J.A.P. Heesterbeek and M.G. Roberts, The type-reproduction number T in models for infectious disease control, Math. Biosci. 206 (2007), pp. 3–10. doi: 10.1016/j.mbs.2004.10.013
  • S.D. Holmberg, D.E. Kay, R.D. Parker, N. Rao, J.R. Harris, N.T. Hargrett, N. Kansou, and P. Blake, Food borne transmission of cholera in micronesian households, Lancet 323(8372) (1984), pp. 325–328.
  • M.S. Islam, B.S. Drasar, and R.B. Sack, Probable role of blue-green algae in maintaining endemicity and seasonality of cholera in Bangladesh: A hypothesis, J. Diarrhoeal Dis. Res. 12(4) (1994), pp. 245–256.
  • C.R. Johnson, D.P. Stanford, D.D. Olesky, and P. van den Driessche, Dominant eigenvalues under trace-preserving diagonal perturbations, Linear Algebra Appl. 212/213 (1994), pp. 415–435.
  • J. Ma and D.J.D. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68 (2006), pp. 679–702. doi: 10.1007/s11538-005-9047-7
  • R.M. May and R.M. Anderson, Transmission dynamics of HIV infection, Nature 326 (1987), pp. 137–142. doi: 10.1038/326137a0
  • J. Mendelsohn and T. Dawson, Climate and cholera in KwaZulu-Natal, South Africa: The role of environmental factors and implications for epidemic preparedness, Int. J. Hygiene Environ. Health 211 (2008), pp. 156–162.
  • Ministry of Public Health of the Dominican Republic. Weekly epidemiological bulletin number 51. December 24, 2011 (in Spanish). Available at: http://www.sespasdigepi.gob.do/documentos/Boletin Semanal 2011/BoletinEpidemiologicoSemanal-SE51-2011.pdf, 2012.
  • Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, and J. Glenn Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. R. Acad. Sci. 108 21 (2011), pp. 8767–8772.
  • Z. Mukandavire, D.L. Smith, and J.G. MorrisJr, Cholera in Haiti: Reproductive numbers and vaccination coverage estimates, Sci. Rep. 3(997) (2013).
  • M.R. Periago, T.R. Frieden, J.W. Tappero, K.M.D. Cock, B. Aasen, and J.K. Andrus, Elimination of cholera transmission in Haiti and the Dominican Republic, Lancet 379(9812) (2012), pp. e12–e13.
  • R. Piarroux, R. Barrais, B. Faucher, R. Haus, M. Piarroux, J. Gaudart, R. Magloire, and D. Raoult, Understanding the cholera epidemic, Haiti, Emerging Infect. Dis. 17(7) (2011), pp. 1161–1168.
  • G.H. Rabbani and W.B. Greenough III, Food as a vehicle of transmission of cholera, J. Diarrhoeal Dis. Res. 17 (1999), pp. 1–9.
  • R.C. Reiner, A.A. King, M. Emch, M. Yunus, A.S.G. Faruque, and M. Pascual, Highly localized sensitivity to climate forcing drives endemic cholera in a megacity, Proc. Nat. Acad. Sci. 109(6) (2012), pp. 2033–2036. doi: 10.1073/pnas.1108438109
  • M.G. Roberts and J.A.P. Heesterbeek, A new method for estimating the effort required to control an infectious disease, Proc. R. Soc. London B 270(1522) (2003), pp. 1359–1364. doi: 10.1098/rspb.2003.2339
  • E.T. Ryan, Haiti in the context of the current global cholera pandemic, Emerging Infect. Dis. 17(11) (2011), pp. 2175–2178. doi: 10.3201/eid1711.110849
  • J. Snow, The cholera near Golden Square, and at Deptford, Med. Times Gaz. 9 (1854), pp. 321–322.
  • E.B. Steinberg, K.D. Greene, C.A. Bopp, D.N. Cameron, J.G. Wells, and E.D. Mintz, Cholera in the United States, 1995–2000: Trends at the end of the twentieth century, J. Infect. Dis. 184(6) (2001), pp. 799–802.
  • D. Swerdlow, E. Mintz, M. Rodriguez, E. Tejada, C. Ocampo, L. Espejo, K. Greene, W. Saldana, L. Seminario, R. Tauxe, J. Wells, N. Bean, A. Ries, M. Pollack, B. Vertiz, and P. Blake, Waterborne transmission of epidemic cholera in Trujillo, Peru: Lessons for a continent at risk, Lancet 340 (1992), pp. 28–32.
  • J. Tien and D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol. 72 (2010), pp. 1506–1533. doi: 10.1007/s11538-010-9507-6
  • J.H. Tien, Z. Shuai, M.C. Eisenberg, and P. van den Driessche, Disease invasion on community networks with environmental pathogen movement, preprint (2013), submitted for publication.
  • A.R. Tuite, J. Tien, M. Eisenberg, D.J.D. Earn, J. Ma, and D.N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med. 154(9) (2011), pp. 593–601. doi: 10.7326/0003-4819-154-9-201105030-00334
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–42. doi: 10.1016/S0025-5564(02)00108-6
  • J. Wang, and S. Liao, A generalized cholera model and epidemic-endemic analysis, J. Biol. Dyn. 6(2) (2012), pp. 568–589. doi: 10.1080/17513758.2012.658089
  • WHO. Cholera annual report 2006, Weekly Epidemiol. Rec. 82 (2007), pp. 273–284.
  • World Health Organization (WHO). Cholera fact sheet n-107. Available at http://www.who.int/mediacentre/factsheets/fs107/en/index.html, 2010.
  • J.A. Yorke, H.W. Hethcote, and A. Nold, Dynamics and control of the transmission of gonorrhea, Sex. Transm. Dis. 5 (1978), pp. 51–56. doi: 10.1097/00007435-197804000-00003