1,761
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Optimal insecticide-treated bed-net coverage and malaria treatment in a malaria-HIV co-infection model

&
Pages 160-191 | Received 31 Aug 2015, Accepted 14 May 2016, Published online: 07 Jun 2016

  • F.B. Agusto, S.Y.D. Valle, K.W. Blayneh, C.N. Ngonghala, M.J. Goncalves, N. Li, R. Zhao, and H. Gong, The impact of bed-net use on malaria prevalence, J. Theor. Biol. 320 (2013), pp. 58–65. doi: 10.1016/j.jtbi.2012.12.007
  • A. Alemu, Y. Shiferaw, Z. Addis, B. Mathewos, and W. Birhan, Effect of malaria on HIV/AIDS transmission and progression, Parasit. Vectors 6 (2013), pp. 1–8. doi: 10.1186/1756-3305-6-18
  • K.W. Blayneh and J. Mohammed-Awel, Insecticide-resistant mosquitoes and malaria control, Math. Biosci. 252 (2014), pp. 14–26. doi: 10.1016/j.mbs.2014.03.007
  • J. Carr, Applications of Centre Manifold Theory, Springer, New York, 1981.
  • C. Castillo-Chavez, S. Blower, P. Van den Driessche, D. Kirschner, and A.A. Yakubu, Mathematical Approaches for Emerging and Reemerging Infectious Diseases, Springer-Verlag, New York, 2002.
  • C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1 (2004), pp. 361–404. doi: 10.3934/mbe.2004.1.361
  • N. Chitnis, J.M. Cushing, and J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math. 67(1) (2006), pp. 24–45. doi: 10.1137/050638941
  • N. Chitnis, J.M. Hyman, and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008), pp. 1272–1296. doi: 10.1007/s11538-008-9299-0
  • D.F. Cuadros, A.J. Branscum, and P.H. Crowley, HIV-malaria co-infection: effects of malaria on the prevalence of HIV in East sub-Saharan Africa, Int. J. Epidemiol. 40 (2011), pp. 931–939. doi: 10.1093/ije/dyq256
  • D.F. Cuadros, P.H. Crowley, B. Augustine, S.L. Stewart, and G. García-Ramos, Effect of variable transmission rate on the dynamics of HIV in sub-Saharan Africa, BMC Infect. Dis. 11(216) (2011), pp. 1–133.
  • O. Diekmann, J.A.P. Heesterbeek, and J.A.J. Metz, On the definition and computation of the basic reprodcution ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365–382. doi: 10.1007/BF00178324
  • P.V. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. John A. Jacquez Memorial. 180 (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • J. Dushoff, W. Huang, and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases, Journal of Mathematical Biology 36 (1998), pp. 227–248. doi: 10.1007/s002850050099
  • K.R. Fister, S. Lenhart, and J.S. McNally, Optimal chemotherapy in an HIV model, Electron. J. Diff. Eq. 1998 (1998), pp. 1–12.
  • W.A. Foster, Mosquito sugar feeding and reproductive energetics, Annu. Rev. Entomol. 640 (1995), pp. 443–4747. doi: 10.1146/annurev.en.40.010195.002303
  • W. Hackbusch, A numerical method for solving parabolic equations with opposite orientations, Computing 20 (1978), pp. 229–240. doi: 10.1007/BF02251947
  • B. Kamal, M. David, R. Svetlana, M.T. Ana, and T. Sharquetta, A mathematical model of HIV and malaria co-infection in sub-Saharan Africa, AIDS Clin. Res. 3 (2012), pp. 1–7.
  • M.J. Klowden, Blood, sex, and the mosquito, Bioscience 45 (1995), pp. 326–331. doi: 10.2307/1312493
  • E.L. Korenromp, B.G. Williams, S.J. de Vlas, E. Gouws, C.F. Gilks, P.D. Ghys, and B.L. Nahlen, Malaria attributable to the HIV-1 epidemic, sub-Saharan Africa, Emerg. Infect. Dis. 11 (2005), pp. 1410–1419. doi: 10.3201/eid1109.050337
  • V. Lakshmikantham, S. Leela, and A.A. Martynyuk, Analysis of Nonlinear Systems, Marcel Dekker Inc., New York, 1989.
  • J.P. LaSalle, The Stability of Dynamical Systems, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1976.
  • S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models, Boca Raton, Chapman & Hall/CRC, Taylor Francis Group, 2007.
  • Z. Mukandavire, A.B. Gumel, W. Garira, and J. Tchuenche, Mathematical analysis of a model for HIV-malaria co-infection, Math. Biosci. Eng. 6 (2009), pp. 333–362. doi: 10.3934/mbe.2009.6.333
  • C.N. Ngonghala, S.Y. Del Valle, R. Zhao, and J. Mohammed-Awel, Quantifying the impact of decay in bed-net efficacy on malaria transmission, J. Theor. Biol. 364 (2014), pp. 247–261. doi: 10.1016/j.jtbi.2014.08.018
  • F. Nyabadza, B.T. Bekele, M.A. Rúa, D.M. Malonza, N. Chiduku, and M. Kgosimore, The implications of HIV treatment on the HIV-malaria coinfection dynamics: a modeling perspective, BioMed Res. Int. (2015), Article ID 659651, 14 pages.
  • L. Perko, Differential Equations and Dynamical Systems, Text in Applied Mathematics, Springer, Berlin, 2000.
  • A.M. Pulkki-Brannstrom, C. Wolff, N. Brannstrom, and J. Skordis-Worrall, Cost and cost effectiveness of long-lasting insecticide-treated bed nets a model-based analysis, Cost Effect. Resour. Alloc. 10 (2012), pp. 1–13. doi: 10.1186/1478-7547-10-5
  • M.A. Safi and A.B. Gumel, Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Comput. Math. Appl. 61 (2011), pp. 3044–3070. doi: 10.1016/j.camwa.2011.03.095
  • A.O. Sanyaolu, A.F. Fagbenro-Beyioku, W.A. Oyibo, O.S. Badaru, O.S. Onyeabor, and C.I. Nnaemeka, Malaria and HIV co-infection and their effect on haemoglobin levels from three healthcare institutions in Lagos, southwest Nigeria, Afr. Health Sci. 13 (2013), pp. 295–300.
  • T.S. Skinner-Adams, J.S. McCarthy, D.L. Gardiner, and K.T. Andrews, HIV and malaria co-infection: interactions and consequences of chemotherapy, Trends Parasitol. 24 (2008), pp. 264–271. doi: 10.1016/j.pt.2008.03.008
  • S.C.K. Tay, K. Badu, A. Mensah, and S.Y. Gbedema, The prevalence of malaria among HIV seropositive individuals and the impact of the co- infection on their hemoglobin levels, Ann. Clin. Microbiol. Antimicrob. 14 (2015), pp. 1–8. doi: 10.1186/s12941-015-0064-6
  • M. Teboh-Ewungkem, J. Mohammed-Awel, F.N. Baliraine, and S. Duke-Sylvester, The effect of intermittent preventive treatment on anti-malarial drug resistance spread in areas with population movement, Mal. J. 13 (2014), pp. 1–21. doi: 10.1186/1475-2875-13-428
  • Unicef, Fact Sheet: Malaria, a Global Crisis Unicef, 2004.
  • M.T White, L. Conteh, R. Cibulskis, and A.C. Ghani, Costs and cost-effectiveness of malaria control interventions–a systematic review, Mal. J. 10 (2011), pp. 1–14. doi: 10.1186/1475-2875-10-1
  • WHO, HIV/AIDS, 2014. Available at http://www.who.int/mediacentre/factsheets/fs360/en/.
  • WHO, The World Malaria Report, Geneva, Switzerland, WHO Press, 2014.
  • R. Zhao and J. Mohammed-Awel, A mathematical model studying mosquito-stage transmission-blocking vaccines, Math. Biosci. Eng. 11 (2014), pp. 1229–1245. doi: 10.3934/mbe.2014.11.1229