1,669
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Global threshold dynamics of an SVIR model with age-dependent infection and relapse

, &
Pages 427-454 | Received 25 Mar 2016, Accepted 16 Aug 2016, Published online: 03 Sep 2016

References

  • F. Brauer, Z. Shuai, and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng. 10 (2013), pp. 1335–1349. doi: 10.3934/mbe.2013.10.1335
  • C.J. Browne, A multi-strain virus model with infected cell age structure: Application to HIV, Nonlinear Anal.: RWA 22 (2015), pp. 354–372. doi: 10.1016/j.nonrwa.2014.10.004
  • Y. Chen, J. Yang, and F. Zhang, The global stability of an SIRS model with infection age, Math. Biosci. Eng. 11 (2014), pp. 449–469. doi: 10.3934/mbe.2014.11.449
  • O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365–382. doi: 10.1007/BF00178324
  • X. Duan, S. Yuan, and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput. 226 (2014), pp. 528–540. doi: 10.1016/j.amc.2013.10.073
  • A. Gabbuti, L. Romano, P. Blanc, F. Meacci, A. Amendola, A. Mele, F. Mazzotta, and A.R. Zanetti, Long-term immunogenicity of hepatitis B vaccination in a cohort of Italian healthy adolescents, Vaccine 25 (2007), pp. 3129–3132. doi: 10.1016/j.vaccine.2007.01.045
  • J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol. 25, American Mathematical Society, Providence, RI, 1988.
  • G. Huang, X. Liu, and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math. 72 (2012), pp. 25–38. doi: 10.1137/110826588
  • M. Iannelli, Mathematical theory of age-structured population dynamics, Applied Mathematics Monographs, Vol. 7, Consiglio Nazionale delle Ricerche (C.N.R.), Giardini Pisa, 1995. comitato Nazionale per le Scienze Matematiche.
  • X. Liu, Y. Takeuchi, and S. Iwami, SVIR epidemic models with vaccination strategies, J. Theoret. Biol. 253 (2008), pp. 1–11. doi: 10.1016/j.jtbi.2007.10.014
  • L. Liu, J. Wang, and X. Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, Nonlinear Anal.: RWA 24 (2015), pp. 18–35. doi: 10.1016/j.nonrwa.2015.01.001
  • P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differ. Equ. 65 (2001), pp. 1–35.
  • P. Magal and C.C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math. 73 (2013), pp. 1058–1095. doi: 10.1137/120882056
  • P. Magal, C.C. McCluskey, and G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal. 89 (2010), pp. 1109–1140. doi: 10.1080/00036810903208122
  • C.C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng. 6 (2009), pp. 603–610. doi: 10.3934/mbe.2009.6.603
  • C.C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng. 9 (2012), pp. 819–841. doi: 10.3934/mbe.2012.9.819
  • P.W. Nelson, M.A. Gilchrist, D. Coombs, J.M. Hyman, and A.S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng. 1 (2004), pp. 267–288. doi: 10.3934/mbe.2004.1.267
  • L. Rong, Z. Feng, and A.S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math. 67 (2007), pp. 731–756. doi: 10.1137/060663945
  • G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng. 5 (2008), pp. 389–402. doi: 10.3934/mbe.2008.5.389
  • H.R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.
  • H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci. 207(1) (2007), pp. 89–103. doi: 10.1016/j.mbs.2006.09.017
  • P. van den Driessche, L. Wang, and X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng. 4(2) (2007), pp. 205–219. doi: 10.3934/mbe.2007.4.205
  • J.A. Walker, Dynamical Systems and Evolution Equations, Plenum Press, New York, 1980.
  • J. Wang, G. Huang, Y. Takeuchi, and S. Liu, SVEIR epidemiological model with varying infectivity and distributed delays, Math. Biosci. Eng. 8 (2011), pp. 875–888. doi: 10.3934/mbe.2011.8.733
  • J. Wang, R. Zhang, and T. Kuniya, The dynamics of an SVIR epidemiological model with infection age, IMA J. Appl. Math. (2015), doi:doi:10.1093/imamat/hxv039.
  • J. Wang, R. Zhang, and T. Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl. 432 (2015), pp. 289–313. doi: 10.1016/j.jmaa.2015.06.040
  • J. Wang, R. Zhang, and T. Kuniya, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Differential Equ. (33) (2015), pp. 1–19.
  • J. Wang, R. Zhang, and T. Kuniya, The stability analysis of an SVEIR model with continuous age-structure in the exposed and infectious classes, J. Biol. Dyn. 9 (2015), pp. 73–101. doi: 10.1080/17513758.2015.1006696
  • J. Wang, R. Zhang, and T. Kuniya, A note on dynamics of an age-of-infection cholera model, Math. Biosci. Eng. 13(1) (2016), pp. 227–247. doi: 10.3934/mbe.2016.13.227
  • G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
  • J. Yang, Z. Qiu, and X .-Z. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng. 11 (2014), pp. 641–665. doi: 10.3934/mbe.2014.11.641