1,972
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Disease dynamics in a coupled cholera model linking within-host and between-host interactions

&
Pages 238-262 | Received 27 Jul 2015, Accepted 15 Aug 2016, Published online: 19 Sep 2016

References

  • R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991.
  • R. Antia, M.A. Nowak, and R.M. Anderson, Antigenic variation and the within-host dynamics of parasites, Proc. Natl. Acad. Sci. USA 93 (1996), pp. 985–989. doi: 10.1073/pnas.93.3.985
  • B. Boldin and O. Diekmann, Superinfections can induce evolutionarily stable coexistence of pathogens, J. Math. Biol. 56 (2008), pp. 635–672. doi: 10.1007/s00285-007-0135-1
  • V. Capasso and S.L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante 27(2) (1979), pp. 121–132.
  • V. Capasso and G. Serio, A generalization of the Kermack–Mckendrick deterministic epidemic model, Math. Biosci. 42(1) (1978), pp. 43–61. doi: 10.1016/0025-5564(78)90006-8
  • A. Carpenter, Behavior in the time of cholera: Evidence from the 2008–2009 cholera outbreak in Zimbabwe, in Social Computing, Behavioral-Cultural Modeling and Prediction, J. Salerno, S.J. Yang, D. Nau, and S.-K. Chai, eds., Springer, College Park, MD, 2014, pp. 237–244.
  • X. Cen, Z. Feng, and Y. Zhao, Emerging disease dynamics in a model coupling within-host and between-host systems, J. Theor. Biol. 361 (2014), pp. 141–151. doi: 10.1016/j.jtbi.2014.07.030
  • R.R. Colwell, A global and historical perspective of the genus Vibrio, in The Biology of Vibrios, F.L. Thompson, B. Austin, and J. Swings, eds., ASM Press, Washington, DC, 2006, pp. 3–26.
  • D. Coombs, M.A. Gilchrist, and C.L. Ball, Evaluating the importance of within- and between-host selection pressures on the evolution of chronic pathogens, Theor. Popul. Biol. 72 (2007), pp. 576–591. doi: 10.1016/j.tpb.2007.08.005
  • M.C. Eisenberg, Z. Shuai, J.H. Tien, and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci. 246(1) (2013), pp. 105–112. doi: 10.1016/j.mbs.2013.08.003
  • Z. Feng, J. Velasco-Hernandez, B. Tapia-Santos, and M.C.A. Leite, A model for coupling within-host and between-host dynamics in an infectious disease, Nonlinear Dyn. 68 (2012), pp. 401–411. doi: 10.1007/s11071-011-0291-0
  • Z. Feng, J. Velasco-Hernandez, and B. Tapia-Santos, A mathematical model for coupling within-host and between-host dynamics in an environmentally-driven infectious disease, Math. Biosci. 241 (2013), pp. 49–55. doi: 10.1016/j.mbs.2012.09.004
  • Z. Feng, X. Cen, Y. Zhao, and J.X. Velasco-Hernandez, Coupled within-host and between-host dynamics and evolution of virulence, Math. Biosci. (2015). Available at http://dx.doi.org/10.1016/j.mbs.2015.02.01.
  • W. Garira, D. Mathebula, and R. Netshikweta, A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment, Math. Biosci. 256 (2014), pp. 58–78. doi: 10.1016/j.mbs.2014.08.004
  • M.A. Gilchrist and D. Coombs, Evolution of virulence: Interdependence, constraints, and selection using nested models, Theor. Popul. Biol. 69 (2006), pp. 145–153. doi: 10.1016/j.tpb.2005.07.002
  • M.A. Gilchrist and A. Sasaki, Modeling host–parasite coevolution: A nested approach based on mechanistic models, J. Theor. Biol. 218 (2002), pp. 289– 308. doi: 10.1006/jtbi.2002.3076
  • D.M. Hartley, J.G. Morris, and D.L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidemics?, PLoS Med. 3 (2006), pp. 0063–0069. doi: 10.1371/journal.pmed.0030063
  • J.A.P. Heesterbeek and M.G. Roberts, The type-reproduction number T in models for infectious disease control, Math. Biosci. 206 (2007), pp. 3–10. doi: 10.1016/j.mbs.2004.10.013
  • M.Y. Li and J.S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal. 27 (1996), pp. 1070–1083. doi: 10.1137/S0036141094266449
  • N. Mideo, S. Alizon, and T. Day, Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases, Trends Ecol. Evol. 23 (2008), pp. 511–517. doi: 10.1016/j.tree.2008.05.009
  • Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, and J.G. Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA 108 (2011), pp. 8767–8772. doi: 10.1073/pnas.1019712108
  • R.L.M. Neilan, E. Schaefer, H. Gaff, K.R. Fister, and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol. 72 (2010), pp. 2004–2018. doi: 10.1007/s11538-010-9521-8
  • E.J. Nelson, J.B. Harris, J.G. Morris, S.B. Calderwood, and A. Camilli, Cholera transmission: The host, pathogen and bacteriophage dynamics, Nat. Rev.: Microbiol. 7 (2009), pp. 693–702.
  • M.G. Roberts and J.A.P. Heesterbeek, A new method for estimating the effort required to control an infectious disease, Proc. R. Soc. B 270 (2003), pp. 1359–1364. doi: 10.1098/rspb.2003.2339
  • M. Shen, Y. Xiao, and L. Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, Math. Biosci. 263 (2015), pp. 37–50. doi: 10.1016/j.mbs.2015.02.003
  • Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci. 234(2) (2011), pp. 118–126. doi: 10.1016/j.mbs.2011.09.003
  • Z. Shuai and P. van den Driessche, Modelling and control of cholera on networks with a common water source, J. Biol. Dyn. 9(1) (2015), pp. 90–103. doi: 10.1080/17513758.2014.944226
  • J.P. Tian and J. Wang, Global stability for cholera epidemic models, Math. Biosci. 232(1) (2011), pp. 31–41. doi: 10.1016/j.mbs.2011.04.001
  • J.H. Tien and D.J.D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol. 72(6) (2010), pp. 1506–1533. doi: 10.1007/s11538-010-9507-6
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • Y. Wang and J. Cao, Global stability of general cholera models with nonlinear incidence and removal rates, J. Franklin Inst. 352(6) (2015), pp. 2464–2485. doi: 10.1016/j.jfranklin.2015.03.030
  • J. Wang and S. Liao, A generalized cholera model and epidemic–endemic analysis, J. Biol. Dyn. 6(2) (2012), pp. 568–589. doi: 10.1080/17513758.2012.658089
  • J. Wang and C. Modnak, Modeling cholera dynamics with controls, Can. Appl. Math. Quart. 19(3) (2011), pp. 255–273.
  • X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn. 9 (2015), pp. 233–261. doi: 10.1080/17513758.2014.974696
  • X. Wang, D. Gao, and J. Wang, Influence of human behavior on cholera dynamics, Math. Biosci. 267 (2015), pp. 41–52. doi: 10.1016/j.mbs.2015.06.009
  • X. Wang, D. Posny, and J. Wang, A reaction–convection–diffusion model for cholera spatial dynamics, Discrete Continuous Dyn. Syst. Ser. B. 21(8) (2016), pp. 2785–2809.