1,669
Views
7
CrossRef citations to date
0
Altmetric
Articles

How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system

ORCID Icon
Pages 211-241 | Received 28 Jul 2016, Accepted 12 May 2017, Published online: 25 Jun 2017

References

  • K.C. Abbott, A dispersal-induced paradox: Synchrony and stability in stochastic metapopulations, Ecol. Lett. 14 (2011), pp. 1158–1169. doi: 10.1111/j.1461-0248.2011.01670.x
  • L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Prentice Hall, Upper Saddle River, NJ, 2003.
  • E.J. Allen, L.J.S. Allen, A. Arciniega, and P.E. Greenwood, Construction of Equivalent Stochastic Differential Equation Models, Stoch. Anal. Appl. 26 (2008), pp. 274–297. doi: 10.1080/07362990701857129
  • S. Battiston, J.D. Farmer, A. Flache, D. Garlaschelli, A.G. Haldane, H. Heesterbeek, C. Hommes, C. Jaeger, R. May, and M. Scheffer, Complexity theory and financial regulation, Science 351 (2016), pp. 818–819. doi: 10.1126/science.aad0299
  • B. Beisner, D. Haydon, and K. Cuddington, Alternative stable states in ecology, Front. Ecol. Environ. 1 (2003), pp. 376–382. doi: 10.1890/1540-9295(2003)001[0376:ASSIE]2.0.CO;2
  • G. Bel, A. Hagberg, and E. Meron, Gradual regime shifts in spatially extended ecosystems, Theor. Ecol. 5 (2012), pp. 591–604. doi: 10.1007/s12080-011-0149-6
  • C. Boettiger, N. Ross, and A. Hastings, Early warning signals: The charted and uncharted territories, Theor. Ecol. 6 (2013), pp. 255–264. doi: 10.1007/s12080-013-0192-6
  • S.R. Carpenter and W.A. Brock, Early warnings of regime shifts in spatial dynamics using the discrete Fourier transform, Ecosphere 1 (2010), p. art10. Available at http://www.esajournals.org/doi/abs/10.1890/ES10-00016.1. doi: 10.1890/ES10-00016.1
  • S.R. Carpenter, J.J. Cole, M.L. Pace, R. Batt, W.A. Brock, T. Cline, J. Coloso, J.R. Hodgson, J.F. Kitchell, D.A. Seekell, L. Smith, and B. Weidel, Early warnings of regime shifts: A whole-ecosystem experiment, Science 332 (2011), pp. 1079–1082. doi: 10.1126/science.1203672
  • L. Dai, K.S. Korolev, and J. Gore, Slower recovery in space before collapse of connected populations, Nature 496 (2013), pp. 355–358. doi: 10.1038/nature12071
  • L. Dai, D. Vorselen, K.S. Korolev, and J. Gore, Generic indicators for loss of resilience before a tipping point leading to population collapse, Science 336 (2012), pp. 1175–1177. doi: 10.1126/science.1219805
  • V. Dakos, M. Scheffer, E.H. van Nes, V. Brovkin, V. Petoukhov, and H. Held, Slowing down as an early warning signal for abrupt climate change, Proc. Natl. Acad. Sci. USA 105 (2008), pp. 14308–14312. doi: 10.1073/pnas.0802430105
  • V. Dakos, E.H. van Nes, R. Donangelo, H. Fort, and M. Scheffer, Spatial correlation as leading indicator of catastrophic shifts, Theor. Ecol. 3 (2010), pp. 163–174. doi: 10.1007/s12080-009-0060-6
  • V. Dakos, S.R. Carpenter, W.A. Brock, A.M. Ellison, V. Guttal, A.R. Ives, S. Kefi, V. Livina, D.A. Seekell, E.H. van Nes, and M. Scheffer, Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data, PLoS One 7 (2012), p. e41010. doi: 10.1371/journal.pone.0041010
  • J.M. Drake and B.D. Griffen, Early warning signals of extinction in deteriorating environments, Nature 467 (2010), pp. 456–459. doi: 10.1038/nature09389
  • N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), pp. 53–98. doi: 10.1016/0022-0396(79)90152-9
  • C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, Springer, Berlin, 2004.
  • V. Guttal and C. Jayaprakash, Spatial variance and spatial skewness: Leading indicators of regime shifts in spatial ecological systems, Theor. Ecol. 2 (2009), pp. 3–12. doi: 10.1007/s12080-008-0033-1
  • A.G. Haldane and R.M. May, Systemic risk in banking ecosystems, Nature 469 (2011), pp. 351–355. doi: 10.1038/nature09659
  • R.D. Holt, Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol. 28 (1985), pp. 181–208. doi: 10.1016/0040-5809(85)90027-9
  • P.J. Hudson and I.M. Cattadori, The Moran effect: A cause of population synchrony, Trends Ecol. Evol. 14 (1999), pp. 1–2. doi: 10.1016/S0169-5347(98)01498-0
  • A.R. Ives and V. Dakos, Detecting dynamical changes in nonlinear time series using locally linear state-space models, Ecosphere 3 (2012). Article 58. doi: 10.1890/ES11-00347.1
  • A.R. Ives, B. Dennis, K.L. Cottingham, and S.R. Carpenter, Estimating community stability and ecological interactions from time series data, Ecol. Monogr. 73 (2003), pp. 301–330. doi: 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2
  • V.A.A. Jansen and A.L. Lloyd, Local stability analysis of spatially homogeneous solutions of multi-patch systems, J. Math. Biol. 41 (2000), pp. 232–252. doi: 10.1007/s002850000048
  • S. Kéfi, V. Guttal, W.A. Brock, S.R. Carpenter, A.M. Ellison, V.N. Livina, D.A. Seekell, M. Scheffer, E.H. van Nes, and V. Dakos, Early warning signals of ecological transitions: Methods for spatial patterns, PloS One 9 (2014), p. e92097. doi: 10.1371/journal.pone.0092097
  • W.D. Koenig, Spatial autocorrelation of ecological phenomena, Trends Ecol. Evol. 14 (1999), pp. 22–26. doi: 10.1016/S0169-5347(98)01533-X
  • M.A. Kramer, W. Truccolo, U.T. Eden, K.Q. Lepage, L.R. Hochberg, E.N. Eskandar, J.R. Madsen, J.W. Lee, A. Maheshwari, E. Halgren, C.J. Chu, and S.S. Cash, Human seizures self-terminate across spatial scales via a critical transition, Proc. Natl. Acad. Sci. 109 (2012), pp. 21116–21121. doi: 10.1073/pnas.1210047110
  • C. Kuehn, A mathematical framework for critical transitions: Bifurcations, fast-slow systems and stochastic dynamics, Phys. D 240 (2011), pp. 1020–1035. doi: 10.1016/j.physd.2011.02.012
  • C. Kuehn, Multiple Time Scale Dynamics, Springer International Publishing, Switzerland, 2015.
  • T.M. Lenton, Early warning of climate tipping points, Nat. Climate Change 1 (2011), pp. 201–209. doi: 10.1038/nclimate1143
  • S.A. Levin, Population dynamic models in heterogeneous environments, Annu. Rev. Ecol. Syst. 7 (1976), pp. 287–310. doi: 10.1146/annurev.es.07.110176.001443
  • D. Ludwig, D.D. Jones, and C.S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Anim. Ecol. 47 (1978), pp. 315–332. doi: 10.2307/3939
  • R.M. Nisbet and W.S.C. Gurney, Modelling Fluctuating Populations, Wiley, New York, 1982.
  • S.M. O'Regan and J.M. Drake, Theory of early warning signals of disease emergence and leading indicators of elimination, Theor Ecol 6 (2013), pp. 333–357. doi: 10.1007/s12080-013-0185-5
  • S.M. O'Regan, J.W. Lillie, and J.M. Drake, Leading indicators of mosquito-borne disease elimination, Theoretical Ecology 9 (2016), pp. 269–286. doi: 10.1007/s12080-015-0285-5
  • T. Quail, A. Shrier, and L. Glass, Predicting the onset of period-doubling bifurcations in noisy cardiac systems, Proceedings of the National Academy of Sciences of the United States of America 112 (2015), pp. 9358–9363. doi: 10.1073/pnas.1424320112
  • R. Quax, D. Kandhai, and P.M.A. Sloot, Information dissipation as an early-warning signal for the Lehman Brothers collapse in financial time series, Scientific Reports 3 (2013), p. 1898. doi: 10.1038/srep01898
  • M. Scheffer, Critical Transitions in Nature and Society, Princeton University Press, Princeton, NJ, 2009.
  • M. Scheffer, J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, E.H. van Nes, M. Rietkerk, and G. Sugihara, Early warning signals for critical transitions, Nature 461 (2009), pp. 53–59. doi: 10.1038/nature08227
  • M. Scheffer, S.R. Carpenter, V. Dakos, and E.H. van Nes, Generic indicators of ecological resilience: Inferring the chance of a critical transition, Annu. Rev. Ecol. Evol. Syst. 46 (2015), pp. 145–167. doi: 10.1146/annurev-ecolsys-112414-054242
  • M. Scheffer, S.R. Carpenter, T.M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. van de Koppel, I.A. van de Leemput, S.A. Levin, E.H. van Nes, M. Pascual, and J. Vandermeer, Anticipating critical transitions, Science 338 (2012), pp. 344–348. doi: 10.1126/science.1225244
  • S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, Addison-Wesley, Reading, MA, 1994.
  • S. Suweis and P. D'Odorico, Early warning signs in social-ecological networks, PloS One 9 (2014), p. e101851. doi: 10.1371/journal.pone.0101851
  • C. Trefois, P.M. Antony, J. Goncalves, A. Skupin, and R. Balling, Critical transitions in chronic disease: Transferring concepts from ecology to systems medicine, Current Opinion in Biotechnology 34 (2015), pp. 48–55. doi: 10.1016/j.copbio.2014.11.020
  • E. Tromeur, L. Rudolf, and T. Gross, Impact of dispersal on the stability of metapopulations, J. Theor. Biol. 392 (2015), pp. 1–11. doi: 10.1016/j.jtbi.2015.11.029
  • I.A. van de Leemput, M. Wichers, A.O.J. Cramer, D. Borsboom, F. Tuerlinckx, P. Kuppens, E.H. van Nes, W. Viechtbauer, E.J. Giltay, S.H. Aggen, C. Derom, N. Jacobs, K.S. Kendler, H.L.J. van der Maas, M.C. Neale, F. Peeters, E. Thiery, P. Zachar, and M. Scheffer, Critical slowing down as early warning for the onset and termination of depression, Proc. Natl. Acad. Sci. 111 (2014), pp. 87–92. doi: 10.1073/pnas.1312114110
  • E.H. van Nes and M. Scheffer, Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift, Am. Nat. 169 (2007), pp. 738–747. doi: 10.1086/516845
  • A.J. Veraart, E.J. Faassen, V. Dakos, E.H. van Nes, M. Lürling, and M. Scheffer, Recovery rates reflect distance to a tipping point in a living system, Nature 481 (2012), pp. 357–359.
  • P. Villa Martín, J.A. Bonachela, S.A. Levin, and M.A. Muñoz, Eluding catastrophic shifts, Proc. Natl. Acad. Sci. USA 112 (2015), pp. E1828–E1836. doi: 10.1073/pnas.1414708112
  • C. Wissel, A universal law of the characteristic return time near thresholds, Oecologia 65 (1984), pp. 101–107. doi: 10.1007/BF00384470
  • J. Zhu, R. Kuske, and T. Erneux, Tipping points near a delayed saddle node bifurcation with periodic forcing, SIAM J. Appl. Dyn. Syst. 14 (2015), pp. 2030–2068. doi: 10.1137/140992229