1,374
Views
11
CrossRef citations to date
0
Altmetric
Articles

An age-structured within-host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions

, &
Pages 89-117 | Received 28 Mar 2017, Accepted 07 Nov 2017, Published online: 24 Nov 2017

References

  • S. Bonhoeffer, R.M. May, G.M. Shaw, and M.A. Nowak, Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA 94 (1997), pp. 6971–6976. doi: 10.1073/pnas.94.13.6971
  • P. Chen, W. Hübner, M.A. Spinelli, and B.K. Chen, Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses, J. Virol. 81 (2007), pp. 582–595.
  • D. Ebert, C.D. Zschokke-Rohringer, and H.J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia 122 (2000), pp. 200–209. doi: 10.1007/PL00008847
  • J. Feldmann and O. Schwartz, HIV-1 virological synapse: Live imaging of transmission, Viruses 2 (2010), pp. 1666–1680. doi: 10.3390/v2081666
  • J.K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal. 20 (1989), pp. 388–395. doi: 10.1137/0520025
  • D.D. Ho, A.U. Neumann, A.S. Perelson, W. Chen, J.M. Leonard, and M. Markowitz, Rapid turnover of plasma virions and CD4+ lymphocytes in HIV-1 infection, Nature 373 (1995), pp. 123–126. doi: 10.1038/373123a0
  • G. Huang, X. Liu, and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math. 72 (2012), pp. 25–38. doi: 10.1137/110826588
  • W. Hübner, G.P. McNerney, P. Chen, B.M. Dale, R.E. Gordon, F.Y.S. Chuang, X.-D. Li, D.M. Asmuth, T. Huser, and B.K. Chen, Quantitative 3D video microscopy of HIV transfer across T cell virological synapses, Science 323 (2009), pp. 1743–1747. doi: 10.1126/science.1167525
  • M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, Vol. 7, Consiglio Nazionale delle Ricerche (C.N.R), Giardini Pisa, 1995, comitato nazionale per le scienze matematiche.
  • N.L. Komarova, D. Anghelina, I. Voznesensky, B. Trinite, D.N. Levy, and D. Wodarz, Relative contribution of free-virus and synaptic transmission to the spread of HIV-1 through target cell populations, Biol. Lett. 9 (2012), pp. 1049–1055. doi: 10.1098/rsbl.2012.1049
  • X. Lai and X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission, SIAM J. Appl. Math. 74 (2014), pp. 898–917. doi: 10.1137/130930145
  • X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl. 426 (2015), pp. 563–584. doi: 10.1016/j.jmaa.2014.10.086
  • P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differential Equations 2001(65) (2001), pp. 1–35.
  • N. Martin and Q. Sattentau, Cell-to-cell HIV-1 spread and its implications for immune evasion, Curr. Opin. HIV AIDS 4 (2009), pp. 143–149. doi: 10.1097/COH.0b013e328322f94a
  • P.W. Nelson, M.A. Gilchrist, D. Coombs, J.M. Hyman, and A.S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng. 1 (2004), pp. 267–288. doi: 10.3934/mbe.2004.1.267
  • M. Nowak and R. May, Virus Dynamics, Oxford University Press, Oxford, 2000.
  • M.A. Nowak, R.M. Anderson, M.C. Boerlijst, S. Bonhoeffer, R.M. May, A.J. McMichael, S.M. Wolinsky, K.J. Kunstman, J.T. Safrit, R.A. Koup, A.U. Neumann, and B.T.M. Korber, HIV-1 evolution and disease progression, Science 274 (1996), pp. 1008–1011. doi: 10.1126/science.274.5289.1008
  • M.A. Nowak, S. Bonhoeffer, G.M. Shaw, and R.M. May, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theoret. Biol. 184 (1997), pp. 203–217. doi: 10.1006/jtbi.1996.0307
  • A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1999), pp. 3–44. doi: 10.1137/S0036144598335107
  • A.S. Perelson, D.E. Kirschner, and R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci. 114 (1993), pp. 81–125. doi: 10.1016/0025-5564(93)90043-A
  • A.S. Perelson, A.U. Neumann, M. Markowitz, J.M. Leonard, and D.D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), pp. 1582–1586. doi: 10.1126/science.271.5255.1582
  • R.R. Regoes, D. Ebert, and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. B 269 (2002), pp. 271–279. doi: 10.1098/rspb.2001.1816
  • C. Reilly, S. Wietgrefe, G. Sedgewick, and A. Haase, Determination of simian immunodeficiency virus production by infected activated and resting cells, AIDS 21 (2007), pp. 163–168. doi: 10.1097/QAD.0b013e328012565b
  • L. Rong, Z. Feng, and A.S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math. 67(3) (2007), pp. 731–756. doi: 10.1137/060663945
  • Q. Sattentau, Avoiding the void: Cell-to-cell spread of human viruses, Nat. Rev. Microbiol. 6 (2008), pp. 815–826. doi: 10.1038/nrmicro1972
  • Q.J. Sattentau, Cell-to-cell spread of retroviruses, Viruses 2 (2010), pp. 1306–1321. doi: 10.3390/v2061306
  • A. Sigal, J.T. Kim, A.B. Balazs, E. Dekel, A. Mayo, R. Milo, and D. Baltimore, Cell-to- cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature 477 (2011), pp. 95–98. doi: 10.1038/nature10347
  • H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, 2011.
  • M. Sourisseau, N. Sol-Foulon, F. Porrot, F. Blanchet, and O. Schwartz, Inefficient human immunodeficiency virus replication in mobile lymphocytes, J. Virol. 81 (2007), pp. 1000–1012. doi: 10.1128/JVI.01629-06
  • G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.