1,354
Views
8
CrossRef citations to date
0
Altmetric
Articles

Global dynamics of an epidemiological model with age of infection and disease relapse

Pages 118-145 | Received 29 Jul 2015, Accepted 17 Nov 2017, Published online: 03 Dec 2017

References

  • A. Bernoussi, A. Kaddar, and S. Asserda, Global stability of a delayed SIRI epidemic model with nonlinear incidence, Int. J. Eng. Math. 2014 (2014), pp. 1–6. Article ID 487589. doi: 10.1155/2014/487589
  • S.M. Blower, T.C. Porco, and G. Darby, Predicting and preventing the emergence of antiviral drug resistance in HSV-2, Nat. Med. 4(6) (1998), pp. 673–678. doi: 10.1038/nm0698-673
  • F. Brauer, Z. Shuai, and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng. 10(5–6) (2013), pp. 1335–1349.
  • Y. Chen, J. Yang, and F. Zhang, The global stability of an SIRS model with infection age, Math. Biosci. Eng. 11(3) (2014), pp. 449–469. doi: 10.3934/mbe.2014.11.449
  • J. Chin, Control of Communicable Diseases Manual, American Public Health Association, Washington, DC, 1999.
  • E.L. Corbett, C.J. Watt, N. Walker, D. Maher, B. Williams, M. Raviglione, and C. Dye, The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic, Arch. Intern. Med. 163(9) (2003), pp. 1009–1021. doi: 10.1001/archinte.163.9.1009
  • X. Duan, S. Yuan, and X. Li, Global stability of an SVIR model with age of vaccination, Appl. Math. Comput. 226 (2014), pp. 528–540.
  • X. Duan, S. Yuan, Z. Qiu, and J. Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Comput. Math. Appl. 68(3) (2014), pp. 288–308. doi: 10.1016/j.camwa.2014.06.002
  • A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity 24(10) (2011), pp. 2891–2911. doi: 10.1088/0951-7715/24/10/012
  • Z. Feng, M. Iannelli, and F.A. Milner, A two-strain tuberculosis model with age of infection, SIAM. J. Appl. Math. 62(5) (2002), pp. 1634–1656. doi: 10.1137/S003613990038205X
  • P. Georgescu and H. Zhang, A Lyapunov functional for a SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput. 219(16) (2013), pp. 8496–8507.
  • H. Guo, M.Y. Li, and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math. 72(1) (2012), pp. 261–279. doi: 10.1137/110827028
  • J.K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal. 20(2) (1989), pp. 388–395. doi: 10.1137/0520025
  • T. Hart, Microterrors, Firefly Books, New York, 2004.
  • M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, Vol. 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale delle Ricerche (C.N.R), Giardini, Pisa, 1995.
  • S.D. Lawn, R. Wood, and R.J. Wilkinson, Changing concepts of ‘latent tuberculosis infection’ in patients living with HIV infection, Clin. Dev. Immunol. 2011 (2011), pp. 1–9. Article ID 980594. doi: 10.1155/2011/980594
  • P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Differ. Equ. 2001(65) (2001), pp. 1–35.
  • P. Magal, C.C. McCluskey, and G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal. 89(7) (2010), pp. 1109–1140. doi: 10.1080/00036810903208122
  • S.W. Martin, Livestock Disease Eradication: Evaluation of the Cooperative State-Federal Bovine Tuberculosis Eradication Program, National Academy Press, Washington, DC, 1994.
  • H.N. Moreira and Y. Wang, Classroom note: Global stability in a S → I → R → I model, SIAM Rev. 39(3) (1997), pp. 496–502. doi: 10.1137/S0036144595295879
  • H.L. Smith and H.R. Thieme, Dynamical Systems and Population Persistence, American Mathematical Society, Providence, 2011.
  • D. Tudor, A deterministic model for herpes infections in human and animal populations, SIAM Rev. 32(1) (1990), pp. 136–139. doi: 10.1137/1032003
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180(1–2) (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • P. van den Driessche and X. Zou, Modeling relapse in infectious diseases, Math. Biosci. 207(1) (2007), pp. 89–103. doi: 10.1016/j.mbs.2006.09.017
  • P. van den Driessche, L. Wang, and X. Zou, Modeling diseases with latency and relapse, Math. Biosci. Eng. 4(2) (2007), pp. 205–219. doi: 10.3934/mbe.2007.4.205
  • K.E. VanLandingham, H.B. Marsteller, G.W. Ross, and F.G. Hayden, Relapse of herpes simplex encephalitis after conventional acyclovir therapy, J. Am. Med. Assoc. 259(7) (1988), pp. 1051–1053. doi: 10.1001/jama.1988.03720070051034
  • C. Vargas-De-Leon, On the global stability of infectious diseases models with relapse, Abstr. Appl. 9 (2013), pp. 50–61.
  • J. Wang, J. Zu, X. Liu, G. Huang, and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst. 20(3) (2012), pp. 235–258. doi: 10.1142/S021833901250009X
  • G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.
  • R. Xu, Global dynamics of a delayed epidemic model with latency and relapse, Nonlinear Anal. Model. Control 18(2) (2013), pp. 250–263. doi: 10.15388/NA.18.2.14026
  • R. Xu, X. Tian and S. Zhang, An age-structured within host HIV-1 infection model with virus-to-cell and cell-to-cell transmissions, J. Biol. Dyn., 12(1)(2018), pp. 89–117. doi: 10.1080/17513758.2017.1404646
  • J.-Y. Yang, X.-Z. Li, and M. Martcheva, Global stability of a DS-DI epidemic model with age of infection, J. Math. Anal. Appl. 385(2) (2012), pp. 655–671. doi: 10.1016/j.jmaa.2011.06.087
  • J. Yang, Z. Qiu, and X .-Z. Li, Global stability of an age-structured cholera model, Math. Biosci. Eng. 11(3) (2014), pp. 641–665. doi: 10.3934/mbe.2014.11.641