5,050
Views
7
CrossRef citations to date
0
Altmetric
Articles

A mathematical model of tumour growth with Beddington–DeAngelis functional response: a case of cancer without disease

Pages 194-210 | Received 07 Sep 2016, Accepted 11 Dec 2017, Published online: 11 Jan 2018

References

  • P.A. Abrams and L.R. Ginzburg, The nature of predation: Prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15 (2000), pp. 337–341. doi: 10.1016/S0169-5347(00)01908-X
  • H.R. Akcakaya, R. Arditi, and L.R. Ginzburg, Ratio-dependent predation: An abstraction that works, Ecology 76 (1995), pp. 995–1004. doi: 10.2307/1939362
  • N. Almog, Molecular mechanisms underlying tumor dormancy, Cancer Lett. 294 (2010), pp. 139–146. doi: 10.1016/j.canlet.2010.03.004
  • R. Arditi and L.R. Ginzburg, Coupling in predator–prey dynamics: Ratio-dependence, J. Theoret. Biol. 139 (1989), pp. 311–326. doi: 10.1016/S0022-5193(89)80211-5
  • R. Arditi, L.R. Ginzburg, and H.R. Akcakaya, Variation in plankton densities among lakes: A case for ratio-dependent predation models, Am. Nat. 138 (1991), pp. 1287–1296. doi: 10.1086/285286
  • A.J. Barrett and B.N. Savani, Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia 23 (2009), pp. 53–58. doi: 10.1038/leu.2008.273
  • J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol. 44 (1975), pp. 331–340. doi: 10.2307/3866
  • W.C. Black and H.G. Welch, Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy, N. Engl. J. Med. 328 (1993), pp. 1237–1243. doi: 10.1056/NEJM199304293281706
  • C. Bourquin, S. Schreiber, S. Beck, G. Hartmann, and S. Endres, Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer, Int. J. Cancer 118 (2006), pp. 2790–2795. doi: 10.1002/ijc.21681
  • S. Bunimovich-Mendrazitsky, H. Byrne, and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull. Math. Biol. 70 (2008), pp. 2055–2076. doi: 10.1007/s11538-008-9344-z
  • S. Bunimovich-Mendrazitsky, E. Shochat, and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer, Bull. Math. Biol. 69 (2007), pp. 1847–1870. doi: 10.1007/s11538-007-9195-z
  • F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theoret. Biol. 247 (2007), pp. 723–732. doi: 10.1016/j.jtbi.2007.04.003
  • R. Chignola and R.I. Foroni, Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: Implications for clinical oncology, IEEE Trans. Biomed. Eng. 52 (2005), pp. 808–815. doi: 10.1109/TBME.2005.845219
  • C. Cosner, D.L. DeAngelis, J.S. Ault, and D.B. Olson, Effects of spatial grouping on the functional response of predators, Theoret. Pop. Biol. 56 (1999), pp. 65–75. doi: 10.1006/tpbi.1999.1414
  • D.L. DeAngelis, R.A. Goldstein, and R.V. O'neill, A model for tropic interaction, Ecology 56 (1975), pp. 881–892. doi: 10.2307/1936298
  • L.G. de Pillis and A.E. Radunskaya, A mathematical model of immune response to tumor invasion, in Computational Fluid and Solid Mechanics, edited by K. Bathe, Proceedings of the Second M.I.T. Conference on Computational Fluid Dynamics and Solid Mechanics, Boston, 17–20 June 2003, USA, (Elsevier, Amsterdam, 2003) pp. 1661–1668.
  • L.G. De Pillis, and A. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Math. Comput. Model. 37 (2003), pp. 1221–1244. doi: 10.1016/S0895-7177(03)00133-X
  • L.G. de Pillis, W. Gu, and A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations, J. Theoret. Biol. 238 (2006), pp. 841–862. doi: 10.1016/j.jtbi.2005.06.037
  • A. Diefenbach, E.R. Jensen, A.M. Jamieson, and D.H. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity, Nature 413 (2001), pp. 165–171. doi: 10.1038/35093109
  • T. Fehm, V. Mueller, R. Marches, G. Klein, B. Gueckel, H. Neubauer, E. Solomayer, and S. Becker, Tumor cell dormancy: Implications for the biology and treatment of breast cancer, APMIS 116 (2008), pp. 742–753. doi: 10.1111/j.1600-0463.2008.01047.x
  • J. Folkman and R. Kalluri, Cancer without disease, Nature 427 (2004), pp. 787–787. doi: 10.1038/427787a
  • D.I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncol. 8 (2007), pp. 2–3. doi: 10.1016/S1470-2045(06)70985-8
  • M. Ghielmini, Multimodality therapies and optimal schedule of antibodies: Rituximab in lymphoma as an example, Hematology Am. Soc. Hematol. Educ. Program 2005 (2005), pp. 321–328.
  • M. Itik and S.P. Banks, Chaos in a three-dimensional cancer model, Int. J. Bifur. Chaos 20 (2010), pp. 71–79. doi: 10.1142/S0218127410025417
  • D. Kirschner and J.C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol. 37 (1998), pp. 235–252. doi: 10.1007/s002850050127
  • V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, and A.S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol. 56 (1994), pp. 295–321. doi: 10.1007/BF02460644
  • H. Li, C. Wang, J. Yu, S. Cao, F. Wei, W. Zhang, Y. Han, and X.-B. Ren, Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery, Cytotherapy 11 (2009), pp. 1076–1083. doi: 10.3109/14653240903121252
  • P. Lissoni, M. Chilelli, S. Villa, L. Cerizza, and G. Tancini, Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: A randomized trial, J. Pineal Res. 35 (2003), pp. 12–15. doi: 10.1034/j.1600-079X.2003.00032.x
  • J.-P. Machiels, R.T. Reilly, L.A. Emens, A.M. Ercolini, R.Y. Lei, D. Weintraub, F.I. Okoye, and E.M. Jaffee, Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice, Cancer Res. 61 (2001), pp. 3689–3697.
  • J.E. Montie, D.P. Wood, J.E. Pontes, J.M. Boyett, and H.S. Levin, Adenocarcinoma of the prostate in cystoprostatectomy specimens removed for bladder cancer, Cancer 63 (1989), pp. 381–385. doi: 10.1002/1097-0142(19890115)63:2<381::AID-CNCR2820630230>3.0.CO;2-O
  • F.K. Nani and M.N. Oguztoreli, Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy, Math. Med. Biol. 11 (1994), pp. 107–147. doi: 10.1093/imammb/11.2.107
  • G.N. Naumov, L.A. Akslen, and J. Folkman, Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch, Cell Cycle 5 (2006), pp. 1779–1787. doi: 10.4161/cc.5.16.3018
  • G.N. Naumov, J. Folkman, O. Straume, and L.A. Akslen, Tumor-vascular interactions and tumor dormancy, APMIS 116 (2008), pp. 569–585. doi: 10.1111/j.1600-0463.2008.01213.x
  • A.K. Nowak, B.W. Robinson, and R.A. Lake, Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors, Cancer Res. 63 (2003), pp. 4490–4496.
  • J.C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol. 58 (1996), pp. 425–447. doi: 10.1007/BF02460591
  • A.S. Perelson and G. Weisbuch, Immunology for physicists, Rev. Mod. Phys. 69 (1997), pp. 1219–1268. doi: 10.1103/RevModPhys.69.1219
  • J. Rak, Y. Mitsuhashi, L. Bayko, J. Filmus, S. Shirasawa, T. Sasazuki, and RS Kerbel, Mutant ras oncogenes upregulate VEGF/VPF expression: Implications for induction and inhibition of tumor angiogenesis, Cancer Res. 55 (1995), pp. 4575–4580.
  • R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H.-I. Cho, S. Antonia, S. Altiok, E. Celis, and D.I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice, J. Clin. Invest. 120 (2010), pp. 1111–1124. doi: 10.1172/JCI40269
  • H.C. Wei, Numerical revisit to a class of one-predator, two-prey models, Int. J. Bifur. Chaos 20 (2010), pp. 2521–2536. doi: 10.1142/S0218127410027143
  • H.C. Wei, On the bifurcation analysis of a food web of four species, Appl. Math. Comput. 215 (2010), pp. 3280–3292.
  • H.C. Wei, A modified numerical method for bifurcations of fixed points of ODE systems with periodically pulsed inputs, Appl. Math. Comput. 236 (2014), pp. 373–383.
  • H.C. Wei, Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer, Discrete Contin. Dyn. Syst. B 21 (2016), pp. 1279–1295. doi: 10.3934/dcdsb.2016.21.1279