7,788
Views
26
CrossRef citations to date
0
Altmetric
Articles

A mathematical model of malaria transmission in a periodic environment

, &
Pages 400-432 | Received 28 May 2017, Accepted 13 Apr 2018, Published online: 05 May 2018

References

  • J.L. Aron, Mathematical modelling of immunity to malaria, Math. Biosci. 90 (1988), pp. 385–396. doi: 10.1016/0025-5564(88)90076-4
  • J.L. Aron and R.M. May, The population dynamics of malaria, in The Population Dynamics of Infectious Disease: Theory and Applications, R.M. Anderson, ed., Chapman and Hall, London, 1982, pp. 139–179.
  • N. Bacaer and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality. The case of cutaneous leishmaniasis in Chichaoua, Morocco, J. Math. Biol. 53(3) (2006), pp. 421–436. doi: 10.1007/s00285-006-0015-0
  • Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. 13 (2012), pp. 1060–1068. doi: 10.1016/j.nonrwa.2011.02.008
  • T. Berge, J.M.-S. Lubuma, G.M. Moremedi, N. Morris and R.K. Shava, A simple mathematical model for Ebola in Africa, J. Biol. Dyn. 11(1) (2017), pp. 42–74. doi: 10.1080/17513758.2016.1229817
  • N. Chitnis, J.M. Cushing, and J.M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math. 67(1) (2006), pp. 24–45. doi: 10.1137/050638941
  • N. Chitnis, J.M. Cushing, and J.M. Hyman, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008), pp. 1272–1296. doi: 10.1007/s11538-008-9299-0
  • B. Dembele, A. Friedman, and A.A. Yakubu, Malaria model with periodic mosquito birth and death rates, J. Biol. Dyn. 3(4) (2009), pp. 430–445. doi: 10.1080/17513750802495816
  • K. Dietz, L. Molineaux, and A. Thomas, A malaria model tested in the African savannah, Bull. World Health Organ. 50 (1974), pp. 347–357.
  • A. Ducrot, S.B. Sirima, B. Somé, and P. Zongo, A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host, J. Biol. Dyn. 3(6) (2009), pp. 574–598. doi: 10.1080/17513750902829393
  • D.A. Ewing, C.A. Cobbold, B.V. Purse, M.A. Nunn, and S.M. white, Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes, J. Theoret. Biol. 400 (2016), pp. 65–79. doi: 10.1016/j.jtbi.2016.04.008
  • F. Forouzannia and A.B. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci. 247 (2014), pp. 80–94. doi: 10.1016/j.mbs.2013.10.011
  • J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
  • P. Hess, Periodic–Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., vol. 247, Longman Scientific and Technical, Harlow, 1991.
  • L.T. Keegan and J. Dushoff, Population-level effects of clinical immunity to malaria, BMC Infect. Dis. 13 (2013), 12 pages. doi: 10.1186/1471-2334-13-428
  • V. Lakshmikantham, S. Leela, and A.A. Martynyuk, Stability Analysis of Nonlinear Systems, Marcel Dekker Inc., New York, Basel, 1989.
  • J.P. Lasalle, The Stability of Dynamical Systems, SIAM, Philadelphia, PA, 1976.
  • A.A. Lashari and G. Zaman, Global dynamics of vector-borne diseases with horizontal transmission in host population, Comput. Math. Appl. 61 (2011), pp. 745–754. doi: 10.1016/j.camwa.2010.12.018
  • Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math. 70(6) (2010), pp. 2023–2044. doi: 10.1137/080744438
  • L. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish, Bull. Math. Biol. 73 (2011), pp. 2384–2407. doi: 10.1007/s11538-011-9628-6
  • C.P. MacCormack, The human host as active agent in malaria epidemiology, Trop. Med. Parasitol. 38 (1987), pp. 233–235.
  • G. Macdonald, The Epidemiology and Control of Malaria, Oxford University Press, London, 1957.
  • W. McGuire, A.V.S. Hill, C.E.M. Allsopp, B.M. Greenwood, and D. Kwiatkowski, Variation in the TNF α-promoter region associated with susceptibility to cerebral malaria, Nature 371 (1994), pp. 508–511. doi: 10.1038/371508a0
  • D. Moulay, M.A.A. Alaoui, and M. Cadivel, The Chikungunya disease: modelling, vector and transmission global dynamics, Math. Biosci. 229 (2011), pp. 50–63. doi: 10.1016/j.mbs.2010.10.008
  • Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl. 363 (2010), pp. 230–237. doi: 10.1016/j.jmaa.2009.08.027
  • G.A. Ngwa and W.S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations, Math. Comput. Model. 32 (2000), pp. 747–763. doi: 10.1016/S0895-7177(00)00169-2
  • P. Olumese, Epidemiology and surveillance: changing the global picture of malaria-myth or reality?, Acta Tropica 95(3) (2005), pp. 265–269. doi: 10.1016/j.actatropica.2005.06.006
  • W. Ouedraogo, B. Sangaré, and S. Traoré, Some mathematical problems arising in biological models: a predator–prey model fish-plankton, J. Appl. Math. Bioinform. 5(4) (2015), pp. 1–27.
  • W. Ouedraogo, B. Sangaré, and S. Traoré, A mathematical study of cannibalism in the fish-plankton model by taking into account the catching effect, Adv. Model. Optim. 18(2) (2016), pp. 197–216.
  • D. Posny and J. Wang, Modelling cholera in periodic environments, J. Biol. Dyn. 8(1) (2014), pp. 1–19. doi: 10.1080/17513758.2014.896482
  • R. Ross, The Prevention of Malaria, John Murray, London, 1911.
  • L. Schofield and I. Mueller, Clinical immunity to malaria, Curr. Mol. Med. 6(2) (2006), pp. 205–221. doi: 10.2174/156652406776055221
  • J.P. Tian and J. Wang, Some results in Floquet theory, with application to periodic epidemic models, Appl. Anal. 2014 (2014). doi: 10.1080/00036811.2014.918606.
  • B. Traoré, B. Sangaré, and S. Traoré, A mathematical model of malaria transmission with structured vector population and seasonality, J. Appl. Math. 2017 (2017), 15 pages. doi: 10.1155/2017/6754097.
  • P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48. doi: 10.1016/S0025-5564(02)00108-6
  • W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dynam. Differen. Equat. 20 (2008), pp. 699–717. doi: 10.1007/s10884-008-9111-8
  • X. Wang and X.-Q. Zhao, A climate-based malaria model with the use of bed nets, J. Math. Biol. (2017). doi: 10.1007/s00285-017-1183-9.
  • J. Wang, S. Gao, Y. Luo, and D. Xie, Threshold dynamics of a Huanglongbing model with logistic growth in periodic environments, Abstr. Appl. Anal. 2014 (2014), 10 pages. doi: 10.1155/2014/841367.
  • World Health Organisation (WHO), Global malaria programme, World Malaria report, 2015.
  • X. Xiao and X. Zou, On latencies in malaria infections and their impact on the disease dynamics, Math. Biosci. Eng. 10(2) (2013), pp. 463–481. doi: 10.3934/mbe.2013.10.463
  • R. Xu, S. Zhang, and F. Zhang, Global dynamics of a delayed SEIS infectious disease model with logistic growth and saturation incidence, Math. Methods Appl. Sci. 39 (2016), pp. 3294–3308. doi: 10.1002/mma.3774
  • H.M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector), Rev Saúd Públ 34 (2000), pp. 223–231. doi: 10.1590/S0034-89102000000300003
  • X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.