3,348
Views
20
CrossRef citations to date
0
Altmetric
Articles

Influence of non-homogeneous mixing on final epidemic size in a meta-population model

, &
Pages 31-46 | Received 18 Apr 2018, Accepted 23 May 2018, Published online: 18 Jun 2018

References

  • R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control, Cambridge University Press, New York, 1991.
  • V. Andreasen, The final size of an epidemic and its relation to the basic reproduction number, Bull. Math. Biol. 73 (2011), pp. 2305–2321. doi: 10.1007/s11538-010-9623-3
  • J. Arino, F. Brauer, P. van den Driessche, J. Watmough, and J. Wu, A final size relation for epidemic models, Math. Biosci. Eng. 4 (2007), pp. 159–175. doi: 10.3934/mbe.2007.4.159
  • F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol. 70 (2008), pp. 1869–1885. doi: 10.1007/s11538-008-9326-1
  • F. Brauer, C. Castillo-Chavez, and Z. Feng, Mathematical Models in Epidemiology, Springer, 2018, to appear
  • S. Busenberg and C. Castillo-Chavez, A general solution of the problem of mixing of subpopulations and its application to risk-and age-structured epidemic models for the spread of AIDS, IMA J. Math. Appl. Med. Biol. 8 (1991), pp. 1–29. doi: 10.1093/imammb/8.1.1
  • T. Chen, R. Liu, and Q. Wang, Application of susceptible-infected-recovered model in dealing with an outbreak of acute hemorrhagic conjunctivitis on one school, Chin. J. Epidemiol. 32 (2011), pp. 723–726.
  • T. Chen and R. Liu, Study of the efficacy of quarantine during outbreaks of acute hemorrhagic conjunctivitis at schools through the susceptive-infective-quarantine-removal-model, Chin. J. Epidemiol. 34 (2013), pp. 75–79.
  • G. Chowell, E. Shim, F. Brauer, P. Diaz-Dueñas, J.M. Hyman, and C. Castillo-Chavez, Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: Application to the 2003 outbreak in Mexico, Stat. Med. 25 (2006), pp. 1840–1857. doi: 10.1002/sim.2352
  • Z. Feng, Final and peak epidemic sizes for SEIR models with quarantine and isolation, Math. Biosci. Eng. 4 (2007), pp. 675–686. doi: 10.3934/mbe.2007.4.675
  • Z. Feng, A.N. Hill, P.J. Smith, and J.W. Glasser, An elaboration of theory about preventing outbreaks in homogeneous populations to include heterogeneity or preferential mixing, J. Theor. Biol. 386 (2015), pp. 177–187. doi: 10.1016/j.jtbi.2015.09.006
  • Z. Feng, A.N. Hill, A.T. Curns, and J.W. Glasser, Evaluating targeted interventions via meta-population models with multi-level mixing, Math. Biosci. 287 (2017), pp. 93–104. doi: 10.1016/j.mbs.2016.09.013
  • J.W. Glasser, Z. Feng, S.B. Omer, P.J. Smith, and L.E. Rodewald, The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: A modelling study, Lancet ID 16 (2016), pp. 599–605. doi: 10.1016/S1473-3099(16)00004-9.
  • J.A. Jacquez, C.P. Simon, J. Koopman, L. Sattenspiel, and T. Perry, Modeling and analyzing HIV transmission: The effect of contact patterns, Math. Biosci. 92 (1988), pp. 119–199. doi: 10.1016/0025-5564(88)90031-4
  • J. Ma and D.J. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68 (2006), pp. 679–702. doi: 10.1007/s11538-005-9047-7
  • P. Magal, O. Seydi, and G. Webb, Final size of an epidemic for a two-group SIR model, SIAM J. Appl. Math. 76 (2016), pp. 2042–2059. doi: 10.1137/16M1065392
  • A. Nold, Heterogeneity in disease-transmission modeling, Math. Biosci. 52 (1980), pp. 227–240. doi: 10.1016/0025-5564(80)90069-3
  • G. Poghotanyan, Z. Feng, J.W. Glasser, and A.N. Hill, Constrained minimization problems for the reproduction number in meta-population models, J. Math. Biol. (2018), pp. 1–37. doi: 10.1007/s00285-018-1216-z.
  • M.J. Tildesley and M.J. Keeling, Is R0 a good predictor of final epidemic size: Foot-and-mouth disease in the UK, J. Theor. Biol. 258 (2009), pp. 623–629. doi: 10.1016/j.jtbi.2009.02.019
  • D. Tilman and P. Kareiva, Spatial Ecology, Princeton University Press, Princeton, NJ, 1998.