1,222
Views
8
CrossRef citations to date
0
Altmetric
Articles

Characterization of Wolbachia enhancing domain in mosquitoes with imperfect maternal transmission

&
Pages 596-610 | Received 12 Dec 2017, Accepted 03 Jul 2018, Published online: 19 Jul 2018

References

  • C.M. Atyame, J. Cattel, C. Lebon, O. Flores, J.S. Dehecq, M. Weill, L.C. Gouagna and P. Tortosa, Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions, PLoS One 10(3) (2015), e0119288. doi: 10.1371/journal.pone.0119288
  • G. Bian, Y. Xu, P. Lu and Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog. 6(4) (2010), e1000833. doi: 10.1371/journal.ppat.1000833
  • G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou, X. Pan, Y. Xu, G. Dimopoulos and Z. Xi, Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection, Science 340 (2013), pp. 748–751. doi: 10.1126/science.1236192
  • L. Cai, S. Ai and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM J. Appl. Math. 74(6) (2014), pp. 1786–1809. doi: 10.1137/13094102X
  • L.B. Carrington, J.R. Lipkowitz, A.A. Hoffmann and M. Turelli, A re-examination of Wolbachia-induced cytoplasmic incompatibility in California Drosophila simulans, PLoS One 6(7) (2011), e22565. doi: 10.1371/journal.pone.0022565
  • M.H.T Chan and P.S. Kim, Modelling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach, Bull. Math. Biol. 75(9) (2013), pp. 1501–1523. doi: 10.1007/s11538-013-9857-y
  • H.L. Dutra, L.M. Dos Santos, E.P. Caragata, J.B. Silva, D.A. Villela and R. Maciel-De-Freitas, From lab to field: the influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes, PLoS Negl. Trop. Dis. 9(4) (2015), pp. 1–22. doi: 10.1371/journal.pntd.0003689
  • F.D. Frentiu, T. Zakir, T. Walker, J. Popovici, A.T. Pyke and D.H.A Van, Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Neglected Tropical Diseases 8(2) (2014), pp. 793–800. doi: 10.1371/journal.pntd.0002688
  • A.A. Hoffmann and M. Turelli, Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects, Genetics 119(2) (1988), pp. 435–444.
  • A.A. Hoffmann, B.L. Montgomery, J. Popovici, I. Iturbeormaetxe, P.H. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y.S. Leong, Y. Dong, H. Cook, J. Axford, A.G. Gallahan, N. Kenny, C. Omodei, E.A. McGraw, P.A. Ryan, S.A. Ritchie, M. Turelli and S.L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476(7361) (2011), pp. 454–459. doi: 10.1038/nature10356
  • A.A. Hoffmann, I. Iturbeormaetxe, A.G. Callahan, B.L. Phillips, K. Billington, J.K. Axford, B. Montgomery, A.P. Turley and S.L. O'Neill, Stability of the wMel Wolbachia infection following Invasion into Aedes aegypti populations, PLoS Neglect Trop D 8(9) (2014), e3115. doi: 10.1371/journal.pntd.0003115
  • L. Hu, M. Huang, M. Tang, J. Yu and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol. 106 (2015), pp. 32–44. doi: 10.1016/j.tpb.2015.09.003
  • M. Huang, M. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math. 58(1) (2015), pp. 77–96. doi: 10.1007/s11425-014-4934-8
  • M. Huang, J. Yu, L. Hu and B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math. 59(7) (2016), pp. 1249–1266. doi: 10.1007/s11425-016-5149-y
  • M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol. 440 (2018), pp. 1–11. doi: 10.1016/j.jtbi.2017.12.012
  • M.J. Keeling, F.M. Jiggins and J.M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity 91(4) (2003), pp. 382–388. doi: 10.1038/sj.hdy.6800343
  • P. Kriesner, A.A. Hoffmann, S.F. Lee, M. Turelli and A.R. Weeks, Rapid sequential spread of two Wolbachia variants in Drosophila simulans, PLoS Pathogens 9(9) (2013), pp. 289–290. doi: 10.1371/journal.ppat.1003607
  • P. Kriesner, W.R. Conner, A.R. Weeks, M. Turelli and A.A. Hoffmann, Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy, Evolution 70(5) (2016), pp. 979–997. doi: 10.1111/evo.12923
  • J. Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J. Biol. Dyn. 11(S2) (2017), pp. 316–333. doi: 10.1080/17513758.2016.1216613
  • J. Li and Z. Yuan, Modelling releases of sterile mosquitoes with different strategies, J. Biol. Dyn. 9(1) (2015), pp. 1–14. doi: 10.1080/17513758.2014.977971
  • L.A. Moreira, I. Iturbeormaetxe, J.A. Jeffery, G. Lu, A.T. Pyke, L.M. Hedges, B.C. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L.E. Hugo, K.N. Johnson, B.H. Kay, E.A. McGraw, A.F. Van den Hurk, P.A. Ryan and S.L. O'Neill, A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium, Cell 139(7) (2009), p. 1268. doi: 10.1016/j.cell.2009.11.042
  • M.A. Ndii, R.I. Hickson and G.N. Mercer, Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission, ANZIAM Journal 53(3) (2012), pp. 213–227. doi: 10.1017/S1446181112000132
  • T.H. Nguyen, H.L. Nguyen, T.Y. Nguyen, S.N. Vu, N.D. Tran, T.N. Le, S. Kutcher, T.P. Hurst, T.T. Duong, J.A. Jeffery, J.M. Darbro, B.H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B.L. Montgomery, A.P. Turley, F. Zigterman, H. Cook, P.E. Cook, P.H. Johnson, P.A. Ryan, C.J. Paton, S.A. Ritchie, C.P. Simmons, S.L. O'Neill and A.A. Hoffmann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Parasites Vectors 8(1) (2015), pp. 1–14. doi: 10.1186/s13071-015-1174-x
  • L. O'Connor, C. Plichart, A.C. Sang, C.L. Brelsfoard, H.C. Bossin and S.L. Dobson, Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment, PLoS Negl. Trop. D 6(11) (2012), pp. e1797. doi: 10.1371/journal.pntd.0001797
  • S.A. Ritchie, A.F.V.D. Hurk, M.J. Smout, K.M. Staunton and A.A. Hoffmann, Mission accomplished? We need a guide to the ‘Post Release’ world of Wolbachia for Aedes-borne disease control, Trends Parasitol. 34(3) (2018), pp. 217–226. doi: 10.1016/j.pt.2017.11.011
  • P.A. Ross, I. Wiwatanaratanabutr, J.K. Axford, V.L. White, N.M. Endersby-Harshman and A.A. Hoffmann, Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress, PLoS Pathog. 13(1) (2017), pp. e1006006. doi: 10.1371/journal.ppat.1006006
  • T.L. Schmidt, I. Filipović, A.A. Hoffmann and G. Rašić, Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia, Heredity 120 (2018), pp. 386–395. doi: 10.1038/s41437-017-0039-9
  • B. Tang, Y. Xiao, S. Tang and J. Wu, Modelling weekly vector control against Dengue in the Guangdong Province of China, J. Theor. Biol. 410 (2016), pp. 65–76. doi: 10.1016/j.jtbi.2016.09.012
  • M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution 64 (2010), pp. 232–241. doi: 10.1111/j.1558-5646.2009.00822.x
  • M. Turelli and N.H. Barton, Deploying dengue-suppressing Wolbachia: Robust models predict slow but effective spatial spread in Aedes aegypti, Theor. Popul. Biol. 115 (2017), pp. 45–60. doi: 10.1016/j.tpb.2017.03.003
  • M. Turelli and A.A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature 353 (1991), pp. 440–442. doi: 10.1038/353440a0
  • M. Turelli and A.A. Hoffmann, Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations, Genetics 140 (1991), pp. 1319–1338.
  • T. Walker, P.H. Johnson, L.A. Moreira, I. Iturbeormaetxe, F.D. Frentiu, C.J. McMeniman, Y.S. Leong, Y. Dong, J. Axford, P. Kriesner, A.L. Lloyd, S.A. Ritchie, S.L. O'Neill and A.A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476(7361) (2011), pp. 450–453. doi: 10.1038/nature10355
  • World Mosquito Program: Country Projects, 2018. Available at http://www.eliminatedengue.com/program.
  • Z. Xi, J.L. Dean, C.C. Khoo and S.L. Dobson, Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection, Insect Biochem. Molec. Biol. 35(8) (2005), pp. 903–910. doi: 10.1016/j.ibmb.2005.03.015
  • Z. Xi, C.C. Khoo and S.L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science 310(5746) (2005), pp. 326–328. doi: 10.1126/science.1117607
  • X. Zhang, S. Tang and R.A. Cheke, Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Biosci. 269 (2015), pp. 164–177. doi: 10.1016/j.mbs.2015.09.004
  • X. Zhang, S. Tang, Q. Liu, R.A. Cheke and H. Zhu, Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease, Math. Biosci. 299 (2018), pp. 58–72. doi: 10.1016/j.mbs.2018.03.003
  • B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math. 74(3) (2014), pp. 743–770. doi: 10.1137/13093354X
  • B. Zheng, M. Tang, J. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol. 76(1–2) (2018), pp. 235–263. doi: 10.1007/s00285-017-1142-5
  • B. Zheng, W. Guo, L. Hu and J. Yu, Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng. 15(2) (2018), pp. 523–541. doi: 10.3934/mbe.2018024