1,118
Views
3
CrossRef citations to date
0
Altmetric
Articles

Oscillatory behaviour control in a continuous culture under double-substrate limitation

&
Pages 663-682 | Received 12 Feb 2017, Accepted 14 Jul 2018, Published online: 28 Jul 2018

References

  • A. Ajbar, On the existence of oscillatory behavior in unstructured model of bioreactors, Chem Eng Sci 56 (2001), pp. 1991–1997.
  • A. Ajbar, On the improvement of performance of bioreactors through periodic forcing, Comput Chem Eng 35 (2011), pp. 1164–1170.
  • J. Alvarez-Ramirez, J. Alvarez, and A. Velasco, On the existence of sustained oscillations in a class of bioreactors, Comput Chem Eng 33 (2009), pp. 4–9.
  • J. Arino, S.S. Pilyugin, and G.S. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models, Can. Appl. Math. Q. 11 (2003), pp. 107–142.
  • I.C.P. Astudillo and C.A.C. Alzate, Importance of stability study of continuous systems for ethanol production, J Biotechnol 151 (2011), pp. 43–55.
  • F.W. Bai, W.A. Anderson, and M. Moo-Young, Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol Adv 26 (2008), pp. 89–105.
  • F.W. Bai, L.J. Chen, W.A. Anderson, and M. Moo-Young, Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system, Biotechnol Bioeng 88 (2004), pp. 558–566.
  • A. Balakrishnan and R.Y.K. Yang, Self–forcing of a chemostat with self–sustained oscillations for productivity enhancement, Chem Eng Commun 189 (2002), pp. 1569–1585.
  • M.M. Ballyk and G.S.K. Wolkowicz, Exploitative competition in the chemostat for Two perfectly substitutable resources, Math Biosci 118 (1993), pp. 127–180.
  • M.M. Ballyk and G.S.K. Wolkowicz, An examination of the thresholds of enrichment: a resource-based growth model, J Math Biol 33 (1995), pp. 435–457.
  • W.H. Bell, Bacterial utilization of algal extracellular products. 1. The kinetic approach, Limnol Oceanogr 25 (1980), pp. 1007–1020.
  • M. Beuse, R. Bartling, A. Kopmann, H. Diekmann, and M. Thoma, Effect of the dilution rate on the mode of oscillation in continuous cultures of Saccharomyces cerevisiae, J Biotechnol 61 (1998), pp. 15–31.
  • M. Beuse, A. Kopmann, H. Diekmann, and M. Thoma, Oxygen, pH value, and carbon source induced changes of the mode of oscillation in synchronous continuous culture of saccharomyces cerevisiae, Biotechnol Bioeng 63 (1999), pp. 410–417.
  • T. Bley and W. Babel, Calculating affinity constants of substrate mixtures in a chemostat, Acta Biotechnol 12 (1992), pp. 13–15.
  • P. Van Bodegom, Microbial maintenance: a critical review on its quantification, Microbial Ecology. 53 (2007), pp. 513–523.
  • L.J. Bruce, D.B. Axford, B. Ciszek, and A.J. Daugulis, Extractive fermentation by Zymomonas mobilis and the control of oscillatory behaviour, Biotechnol Lett 13 (1991), pp. 291–296.
  • G.J. Butler and G.S.K. Wolkowicz, Exploitative competition in a chemostat for two complementary and possibly inhibitory resources, Math Biosci 83 (1987), pp. 1–48.
  • C.I. Chen and K.A. McDonald, Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. analysis of cell synchronization and metabolism, Biotechnol Bioeng 36 (1990), pp. 28–38.
  • P. Duboc and U. von Stockar, Modeling of oscillating cultivations of Saccharomyces cerevisiae: identification of population structure and expansion kinetics based on on-line measurements, Chem Eng Sci 55 (2000), pp. 149–160.
  • T. Egli, The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates, Adv Microb Ecol 14 (1995), pp. 305–386.
  • T. Egli, C. Bosshard, and G. Hamer, Simultaneous utilization of methanol–glucose mixtures by hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern, Biotechnol Bioeng 28 (1986), pp. 1735–1741.
  • S. F. Ellermeyer and S.S. Pilyugin, A size-structured model of bacterial growth and reproduction, J Biol Dyn 6 (2012), pp. 131–147.
  • B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems. A Guide to XPPAUT for Researchers and Students, SIAM series Software Environments and Tools, Philadelphia, PA, 2002.
  • C.K. Essajee and R.D. Tanner, The effect of extracellular variables on the stability of the continuous baker’s yeast–ethanol fermentation process, Process Biochem 14 (1979), pp. 16–25.
  • J.P. Grover, Resource Competition, Chapman & Hall, New York, 1997.
  • I.M.L. Jobses, G.T.C. Egberts, K.C.A.M. Luyben, and J.A. Roels, Fermentation kinetics of Zymomonas mobilis at high ethanol concentrations: oscillations in continuous cultures, Biotechnol Bioeng 28 (1986), pp. 868–877.
  • K.D. Jones and D.S. Kompala, Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures, J Biotechnol 71 (1999), pp. 105–131.
  • M. Jules, J. Francois, and J.L. Parrou, Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose, FEBS J 272 (2005), pp. 1490–1500.
  • K. Kovarova-Kovar and T. Egli, Growth kinetics of suspended microbial cells: from single–substrate–controlled growth to mixed–substrate kinetics, Microbiol Mol Biol Rev 62 (1998), pp. 646–666.
  • V. Krivan, The ideal free distribution and bacterial growth on two substrates, Theor. Populat. Biol. 69 (2006), pp. 181–191.
  • U. Lendenmann and T. Egli, Kinetic models for the growth of Escherichia coli with mixtures of sugars under carbon–limited conditions, Biotechnol Bioeng 59 (1998), pp. 99–107.
  • J. A. Leon and D. B. Tumpson, Competition between two species for two complementary or substitutable resources, J Theor Biol 50 (1975), pp. 185–201.
  • T. Mankad and H.R. Bungay, Models for microbial growth with more than one limiting nutrient, J Biotechnol 7 (1988), pp. 161–166.
  • E. Martegani, D. Porro, B.M. Ranzi, and L. Alberghina, Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotechnol Bioeng 36 (1990), pp. 453–459.
  • F. Mazenc, M. Malisoff, and J. Harmand, Stabilization in a two-species chemostat with Monod growth functions, IEEE Trans. Autom. Control. 54 (2009), pp. 855–861.
  • F. Mazenc, M. Malisoff, Stability and stabilization for models of chemostats with multiple limiting substrates, J Biol Dyn 6 (2012), pp. 612–627.
  • P. J. McLellan, A.J. Daugulis, and J. Li. The incidence of oscillatory behavior in the continuous fermentation of zymomonasmobilis, Biotechnol Prog 15 (1999), pp. 667–680.
  • A.H. Mondala, R. Hernandez, T. French, L. McFarland, J.W. Santo Domingo, M. Meckes, H. Ryu, and B. Iker, Enhanced lipid and biodiesel production from glucose-fed activated sludge: kinetics and microbial community analysis, AIChE J 58 (2012), pp. 1279–1290.
  • J. Monod, Recherches sur la Croissance des Cultures Bactériennes (Studies on the Growth of Bacterial Cultures), Hermann and Cie, Paris, 1942.
  • I.H. Mustafa, Two-Parameter continuation and bifurcation strategies for oscillatory behavior elimination from a Zymomonas mobilis fermentation system, Chem Eng Technol 38 (2015), pp. 1362–1370.
  • I.H. Mustafa, A. Elkamel, A. Lohi, G. Ibrahim, and S.S.E.H. Elnashaie, Structured mathematical modeling, bifurcation, and simulation for the bioethanol fermentation process using Zymomonas mobilis. Ind Eng Chem Res 53 (2014), pp. 5954–5972.
  • M.I. Nelson and H.S. Sidhu, Analysis of a chemostat model with variable yield coefficient, J Math Chem 38 (2005), pp. 605–615.
  • G.C. Okpokwasili and C.O. Nweke, Microbial growth and substrate utilization kinetics, Afr J Biotechnol 5 (2006), pp. 305–317.
  • S.J. Parulekar, G.B. Semones, M.J. Rolf, J.C. Lievense, and H.C. Lim, Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae, Biotechnol Bioeng 28 (1986), pp. 700–710.
  • P.R. Patnaik, Oscillatory metabolism of Saccharomyces cerevisiae: an overview of mechanisms and models, Biotechnol Adv 21 (2003), pp. 183–192.
  • S.S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, J. Math. Biosci. 182 (2003), pp. 151–166.
  • S.J. Pirt, The maintenance energy of bacteria in growing cultures, Proc. R. Soc. London Ser. B. 163 (1965), pp. 224–231.
  • D. Ramkrishna, and H.S. Song, Dynamic models of metabolism: review of the cybernetic approach, AIChE J 58 (2012), pp. 986–997.
  • D. Rapport, An optimization model of food selection, Am Nat 105 (1971), pp. 575–587.
  • P. Richard, The rhythm of yeast, FEMS Microbiol Rev 27 (2003), pp. 547–557.
  • Y. Shen, X.M. Ge, and F.W. Bai, Application of oscillation for efficiency improvement of continuous ethanol fermentation with saccharomyces cerevisiae under very–high–gravity conditions, Appl. Microbiol. Biot. 86 (2010), pp. 103–108.
  • P. Skupin and M. Metzger, An alternative approach for oscillatory behaviour control in a nonlinear bioprocess, IFAC Proceedings 46 (2013), pp. 253–258.
  • P. Skupin and M. Metzger, Oscillatory behavior control in continuous fermentation processes, IFAC-PapersOnLine, 48 (2015), pp. 1114–1119.
  • H.L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition (Vol. 13), Cambridge University Press, Cambridge, 1995.
  • H.Y. Sohn, D.B. Murray, and H. Kuriyama, Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony, Yeast 16 (2000), pp. 1185–1190.
  • M. Sonmezisik, D. Tanyolac, S. Seker, and A. Tanyolac, The double–substrate growth kinetics of sulfolobus solfataricus, a thermophilic sulfur–removing archeabacterium, Biochem Eng J 1 (1998), pp. 243–248.
  • L.M. Sridhar, Elimination of oscillations in fermentation processes, AIChE J 57 (2011), pp. 2397–2405.
  • K. Sun, A. Kasperski, Y. Tian, Theoretical study and optimization of the biochemical reaction process by means of feedback control strategy. J Chem 2013 (2013), pp. 1–13.
  • D. Tilman, Resource Competition and Community Structure, Princeton University Press, Princeton, NJ1982
  • G. Wang and W.M. Post, A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling, FEMS Microbiol Ecol 81 (2012), pp. 610–617.
  • H. Yoon, G. Klinzing, and H.W. Blanch, Competition for mixed substrates by microbial populations, Biotechnol Bioeng 19 (1977), pp. 1193–1210.
  • L. Zhu and X. Huang, Multiple limit cycles in a continuous culture vessel with variable yield, Nonlinear Anal. 64 (2006), pp. 887–894.
  • M. Zinn, B. Witholt, and T. Egli, Dual nutrient limited growth: models, experimental observations, and applications, J Biotechnol 113 (2004), pp. 263–279.