1,690
Views
2
CrossRef citations to date
0
Altmetric
Articles

Local approximation of Markov chains in time and space

ORCID Icon
Pages 265-287 | Received 12 Feb 2018, Accepted 05 Jan 2019, Published online: 24 Jan 2019

References

  • L.J.S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Pearson, Upper Saddle River, NJ, 2003.
  • L.J.S. Allen and A.M. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci. 163(1) (2000), pp. 1–33.
  • L.J.S. Allen and G.E. Lahodny, Extinction thresholds in deterministic and stochastic epidemic models, J. Biol. Dyn. 6(2) (2012), pp. 590–611.
  • L.J.S. Allen and E.J. Schwartz, Free-virus and cell-to-cell transmission in models of equine infectious anemia virus infection, Math. Biosci. 270 (2015), pp. 237–248.
  • L.J.S. Allen and P. van den Driessche, Relations between deterministic and stochastic thresholds for disease extinction in continuous- and discrete-time infectious disease models, Math. Biosci. 243(1) (2013), pp. 99–108.
  • J. Arino, Diseases in metapopulations, in Modeling and Dynamics of Infectious Diseases, Vol. 11, Z. Ma, Y. Zhou, and J. Wu, eds., World Scientific, New Jersey, 2009, pp. 65–123.
  • J. Arino, Spatio-temporal spread of infectious pathogens of humans, Infect. Dis. Model. 2(2) (2017), pp. 218–228.
  • J. Arino and S. Portet, Epidemiological implications of mobility between a large urban centre and smaller satellite cities, J. Math. Biol. 71(5) (2015), pp. 1243–1265.
  • J. Arino and P. van den Driessche, A multi-city epidemic model, Math. Popul. Stud. 10(3) (2003), pp. 175–193.
  • F. Arrigoni and A. Pugliese, Limits of a multi-patch SIS epidemic model, J. Math. Biol. 45(5) (2002), pp. 419–440.
  • N.T.J. Bailey, The Mathematical Theory of Infectious Diseases and Its Applications, 2nd ed., Hafner, New York, 1975.
  • F.G. Ball and P. Donnelly, Strong approximations for epidemic models, Stoch. Proc. Appl. 55(1) (1995), pp. 1–21.
  • F. Ball, B. Tom, and L. Owen, Stochastic multitype epidemics in a community of households: Estimation and form of optimal vaccination schemes, Math. Biosci. 191(1) (2004), pp. 19–40.
  • M. Behzad and G. Chartrand, Introduction to the Theory of Graphs, Allyn and Bacon, Inc., Boston, 1971.
  • M. Bóna, A walk through combinatorics: An introduction to enumeration and graph theory, World Scientific, New Jersey, 2013.
  • C.J. Burke and M. Rosenblatt, A Markovian function of a Markov chain, Ann. Math. Statist. 29(4) (1958), pp. 1112–1122.
  • A. Dey and A. Mukherjea, Collapsing of non-homogeneous Markov chains, Statist. Probab. Lett. 84(1) (2014), pp. 140–148.
  • T. Dhirasakdanon, H.R. Thieme, and P. Van Den Driessche, A sharp threshold for disease persistence in host metapopulations, J. Biol. Dyn. 1(4) (2007), pp. 363–378.
  • O. Diekmann, J. Heesterbeek, and J. Metz, On the definition and computation of the basic reproduction ratio R0 in models of infectious disease in heterogeneous populations, J. Math. Biol. 28 (1990), pp. 365–382.
  • R. Durrett, Essentials of Stochastic Processes, 2nd ed., Springer-Verlag, New York, 2012.
  • K. Falk, E. Namork, E. Rimstad, S. Mjaaland, and B.H. Dannevig, Characterization of infectious salmon anemia virus, an orthomyxo-like virus isolated from Atlantic salmon (Salmo salar L.), J. Virol. 71(12) (1997), pp. 9016–23.
  • I.I. Gikhman and A.V. Skorokhod, Introduction to the Theory of Random Processes, Dover, Mineola, NY, 1996.
  • S.A. Gourley, H.R. Thieme, and P. van den Driessche, Stability and persistence in a model for bluetongue dynamics, SIAM J. Appl. Math. 71(4) (2011), pp. 1280–1306.
  • A. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math. 71(3) (2011), pp. 876–902.
  • J. Hachigian, Collapsed Markov chains and the Chapman-Kolmogorov equation, Ann. Math. Statist. 34(1) (1963), pp. 233–237.
  • T.E. Harris, The Theory of Branching Processes, Springer-Verlag, Berlin, 1963.
  • A. Iggidr, G. Sallet, and B. Tsanou, Global stability analysis of a metapopulation SIS epidemic model, Math. Popul. Stud. 19(3) (2012), pp. 115–129.
  • M. Jesse, R. Mazzucco, U. Dieckmann, H. Heesterbeek, and J.A.J. Metz, Invasion and persistence of infectious agents in fragmented host populations, PLoS ONE 6(9) (2011).
  • S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, 2nd ed., Academic Press, New York, 1975.
  • M.J. Keeling, Metapopulation moments: Coupling, stochasticity and persistence, J. Anim. Ecol. 69(5) (2000), pp. 725–736.
  • M.J. Keeling, C.A. Gilligan, and M.J. Keeling, Metapopulation dynamics of bubonic plague, Nature 407(6806) (2000), pp. 903–906.
  • M.J. Keeling and J.V. Ross, On methods for studying stochastic disease dynamics, J. R. Soc. Interface 5(19) (2008), pp. 171–181.
  • J.G. Kemeny and J.L. Snell, Finite Markov Chains, Springer-Verlag, New York, 1976.
  • W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics – I, Proc. R. Soc. A 115(772) (1927), pp. 700–721.
  • A. Khanafer and B. Tamer, An optimal control problem over infected networks, Proceedings of the International Conference of Control, Dynamic Systems, and Robotics, Ottawa, Ontario, Canada, 2014.
  • A.L. Krause, L. Kurowski, K. Yawar, and R.A. Van Gorder, Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies, J. Theor. Biol. 449 (2018), pp. 35–52.
  • G.E. Lahodny and L.J.S. Allen, Probability of a disease outbreak in stochastic multipatch epidemic models, Bull. Math. Biol. 75(7) (2013), pp. 1157–1180.
  • E. Milliken, The probability of extinction of infectious salmon anemia virus in one and two patches, Bull. Math. Biol. 79 (2017), pp. 2887–2904.
  • E. Milliken and S.S. Pilyugin, A model of infectious salmon anemia virus with viral diffusion between wild and farmed patches, DCDS-B 21(6) (2016), pp. 1869–1893.
  • J.R. Norris, Markov Chains, Cambridge University Press, New York, 1997.
  • M.A. Pinsky and S. Karlin, Introduction to Stochastic Modeling, Academic Press, Boston, 2011.
  • M. Roseblatt, Functions of a Markov process that are Markovian, J. Math. Mech. 8(4) (1959), pp. 585–596.
  • M. Rosenblatt, Random Processes, Oxford University Press, New York, 1962.
  • R. Ross, An application of the theory of probabilities to the study of a priori pathometry. Part I, Proc. R. Soc. A 92(638) (1916), pp. 204–230.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • S. Vike, S. Nylund, and A. Nylund, ISA virus in Chile: Evidence of vertical transmission, Arch. Virol. 154(1) (2009), pp. 1–8.
  • W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci. 190(1) (2004), pp. 97–112.
  • H.W. Watson and F. Galton, On the probability of extinction of families, J. Anthropol. Inst. GB Ireland 4 (1875), pp. 138–144.
  • D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.
  • R.W. West and J.R. Thompson, Models for the simple epidemic, Math. Biosci. 141 (1997), pp. 29–39.
  • P. Whittle, The outcome of a stochastic epidemic – a note on Bailey's paper, Biometrika 42 (1955), pp. 116–122.