1,238
Views
5
CrossRef citations to date
0
Altmetric
Articles

A generalized within-host model of dengue infection with a non-constant monocyte production rate

, &
Pages 143-161 | Received 19 Feb 2019, Accepted 04 Feb 2020, Published online: 02 Mar 2020

References

  • A.S. Ackleh, K. Deng, K. Ito, and J.J. Thibodeaux, A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate, Math. Biosci. 204 (2006), pp. 21–48. doi: 10.1016/j.mbs.2006.08.004
  • M. Akashi and H.P. Koeffler, Colony stimulating factors: Regulation of production, in Modern Trends in Human Leukemia IX. Haematology and Blood Transfusion/Hämatologie und Bluttransfusion, R. Neth, E. Frolova, R. C. Gallo, M. F. Greaves, B. V. Afanasiev and E. Elstner, eds., Springer, Berlin, 1992, pp. 83–92.
  • H. Ansari and M. Hesaraaki, A with-In host dengue infection model with immune response and beddington-DeAngelis incidence rate, Appl. Math. 3 (2012), pp. 177–184. doi: 10.4236/am.2012.32028
  • A.T. Bäck and Å. Lundkvist, Dengue viruses – an overview, Infect. Ecol. Epidemiol. 3 (2013), p. 3. doi:10.3402/iee:v3i0.19839.
  • H.T. Banks, C.T. Cole, P.M. Schlosser, and H.T. Tran, Modeling and optimal regulation of erythropoiesis subject to benzene intoxication, Math. Biosci. Eng. 1 (2004), pp. 15–48. doi: 10.3934/mbe.2004.1.15
  • H.T. Banks, K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkhauser, Boston, MA, 1989.
  • J. Bélair, M.C. Mackey, and J.M. Mahaffy, Age-structured and two-delay models for erythropoiesis, Math. Biosci. 128 (1995), pp. 317–346. doi: 10.1016/0025-5564(94)00078-E
  • R. Ben-Shachar and K. Koelle, Minimal within-host dengue models highlight the specific roles of the immune response in primary and secondary dengue infections, J. R. Soc. Interface 12 (2015), pp. 20140886. doi: 10.1098/rsif.2014.0886
  • H.E. Clapham, V. Tricou, N.V.V Chau, C.P. Simmons, and N.M. Ferguson, Within-host viral dynamics of dengue serotype 1 infection, J. R. Soc. Interface 11 (2014), pp. 20140094. doi: 10.1098/rsif.2014.0094
  • Farlex and Partners Medical Dictionary, 2009.
  • G. García, N. González, A.B. Pérez, B. Sierra, E. Aguirre, D. Rizo, A. Izquierdo, L.Sánchez, D. Díaz, M. Lezcay, B. Pacheco, K. Hirayama, and M.G. Guzmán, Long-term persistence of clinical symptoms in dengue-infected persons and its association with immunological disorders, Int. J. Infect. Dis. 15 (2011), pp. e38–e43. doi: 10.1016/j.ijid.2010.09.008
  • T.P. Gujarati and G.J. Ambika, Virus antibody dynamics in primary and secondary dengue infections, Math. Biol. 69 (2014), pp. 1773–1800. doi: 10.1007/s00285-013-0749-4
  • S. Kalayanarooj, D.W. Vaughn, S. Nimmannitya, S. Green, S. Suntayakorn, N. Kunentrasai, W.Viramitrachai, E. Ratanachu-eke, S. Kiatpolpoj, B.L. Innis, A.L. Rothman, A. Nisalak, and F.A. Ennis, Early clinical and laboratory indicators of acute dengue illness, J. Infect. Dis. 176 (1997), pp. 313–321. doi: 10.1086/514047
  • B.G. Klekamp, Assessing the relationship of monocytes with primary and secondary dengue infection among hospitalized dengue patients in Malaysia, 2010: A cross-sectional study, Graduate theses and dissertations, 2011. http://scholarcommons.usf.edu/etd/3185.
  • Y. Le Meur, V. Leprivey-Lorgeot, S. Mons, M. José, J. Dantal, B. Lemauff, J.C. Aldigier, C.Leroux-Robert, and V. Praloran, Serum levels of macrophage-colony stimulating factor (M-CSF): a marker of kidney allograft rejection, Nephrol. Dial. Transpl. 19 (2004), pp. 1862–1865. doi: 10.1093/ndt/gfh257
  • A. Mishra, A within-host model of dengue viral infection dynamics, Applied Analysis in Biological and Physical Sciences, Springer Proceedings in Mathematics and Statistics, 2016. doi:10.1007/978-81-322-3640-59.
  • R. Nikin-Beers and S.M. Ciupe, The role of antibody in enhancing dengue virus infection, Math. Biosci. 263 (2015), pp. 83–92. doi: 10.1016/j.mbs.2015.02.004
  • R. Nikin-Beers, J.C. Blackwood, L.M. Childs, and S.M. Ciupe, Unraveling within-host signatures of dengue infection at the population level, J. Theoretical Biol. 446 (2018), pp. 79–86. doi: 10.1016/j.jtbi.2018.03.004
  • R. Nikin-Beers and S.M. Ciupe, Modelling original antigenic sin in dengue viral infection, Math. Med. Biol. 35 (2018), pp. 257–272. doi: 10.1093/imammb/dqx002
  • S. Noisakran, K. Chokephaibulkit, P. Songprakhon, N. Onlamoon, H.M. Hsiao, F. Villinger, A. Ansari, and G.C. Perng, A reevaluation of the mechanisms leading to dengue hemorrhagic fever, Ann. N Y Acad. Sci. 1171(Suppl 1) (2009), pp. E24–E35. doi: 10.1111/j.1749-6632.2009.05050.x
  • N. Nuraini, H. Tasman, E. Soewono, and K.A. Sidarto, A with-in host dengue infection model with immune response, Math. Comput. Model 49 (2009), pp. 1148–1155. doi: 10.1016/j.mcm.2008.06.016
  • T. Pang, M.J. Cardosa, and G.M.G. Guzman, Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS), Immunol. Cell Biol. 85 (2007), pp. 43–45. doi: 10.1038/sj.icb.7100008
  • V. Pascal, N. Schleinitz, C. Brunet, S. Ravet, E. Bonnet, X. Lafarge, M. Touinssi, D. Reviron, J.F.Viallard, J.F. Moreau, J. Déchanet-Merville, P. Blanco, J.R. Harlé, J. Sampol, E. Vivier, F. Dignat-George, and P. Paul, Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions, Eur. J. Immunol. 34 (2004), pp. 2930–2940. doi: 10.1002/eji.200425146
  • A.A. Patel, Y. Zhang, J.F. Fullerton, The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214 (2017), pp. 1913–1923. doi: 10.1084/jem.20170355
  • P. Roth, M.G. Dominguez, and E.R. Stanley, The effects of colony-stimulating factor-1 on the distribution of mononuclear phagocytes in the developing osteopetrotic mouse, Blood 91 (1998), pp. 3773–3783. doi: 10.1182/blood.V91.10.3773
  • P. Sun, K. Bauza, S. Pal, Z. Liang, S.J. Wu, C. Beckett, T. Burgess, K. Porter, Infection and activation of human peripheral blood monocytes by dengue viruses through the mechanism of antibody-dependent enhancement, Virology 421 (2011), pp. 245–252. doi: 10.1016/j.virol.2011.08.026
  • J.J. Thibodeaux and M. Hennessey, A within-Host model of dengue infection with a non-constant monocyte production rate, Appl. Math. 7 (2016), pp. 2382–2393. doi: 10.4236/am.2016.718187
  • V. Tricou, N.N. Minh, J. Farrar, H.T. Tran, and C.P. Simmons, Kinetics of viremia and NS1 antigenemia are shaped by immune status and virus serotype in adults with dengue, PLoS Negl. Trop. Dis. 5 (2011), pp. e1309. doi:10.1371/journal.pntd.0001309.
  • J.J. Tsai, J.S. Chang, K. Chang, P.C. Chen, L.T. Liu, T.C. Ho, S.S. Tan, Y.W. Chien, Y.C. Lo, and G.C. Perng, Transient monocytosis subjugates low platelet count in adult dengue patients, Biomed. Hub 2 (2017), pp. 457785. doi:10.1159/000457785.
  • W.K. Wang, T.L. Sung, Y.C. Tsai, C.L. Kao, S.M. Chang, and C.C. King, Detection of dengue virus replication in peripheral blood mononuclear cells from dengue virus type 2-infected patients by a reverse transcription-real-time PCR assay, J. Clin. Microbiol. 40 (2002), pp. 4472–4478. doi: 10.1128/JCM.40.12.4472-4478.2002
  • World Health Organization, Tropical Disease Research, Making Health Research Work for Poor People, Progress 2003–2004, Geneva, 2005.