1,661
Views
1
CrossRef citations to date
0
Altmetric
Research Article

On the basic reproduction number in semi-Markov switching networks

, , &
Pages 73-85 | Received 17 Jun 2020, Accepted 11 Dec 2020, Published online: 05 Jan 2021

References

  • N. Bacaër, M. Khaladi, On the basic reproduction number in a random environment, J. Math. Biol. 67(6) (2013), pp. 1729–1739.
  • F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol. 70(7) (2008), pp. 1869–1885.
  • X. Cao and Z. Jin, N-intertwined SIS epidemic model with markovian switching, Stoc. Dyn. 19 (2018), pp. 1950031.
  • X. Cao and Z. Jin, Epidemic threshold and ergodicity of an SIS model in switched networks, J. Math. Anal. Appl. 479(1) (2019), pp. 1182–1194.
  • I.I. Gihman and A.V. Skorohod, The Theory of Stochastic Processes II, Springer-Verlag, New York, 1975.
  • P. Holme and J. Saramäki, Temporal networks, Phys. Reports 519(3) (2012), pp. 97–125.
  • W.O. Kermack and A.G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London A 115 (1927), pp. 700–721.
  • D. Li, S. Liu, and J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with semi-markov switching, J. Differ. Equ. 266(7) (2019), pp. 3973–4017.
  • K. Li, H. Zhang, X. Fu, Y. Ding, and M. Small, Epidemic threshold determined by the first moments of network with alternating degree distributions, Phys. A: Stat. Mech. Appl. 419 (2015), pp. 585–593.
  • N. Masuda and P. Holme, Temporal Network Epidemiology, Springer Nature, Singapore, 2017.
  • J.C. Miller, Epidemic size and probability in populations with heterogeneous infectivity and susceptibility, Phys. Rev. E Stat. Nonlinear Soft. Matter Phys. 76(1 Pt 1) (2007), pp. 010101.
  • M.E. Newman, Spread of epidemic disease on networks, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66(1 Pt 2) (2002), pp. 016128.
  • M. Ogura and V.M. Preciado, Stability of spreading processes over time-varying large-scale networks, IEEE Trans. Netw. Sci. Eng. 3(1) (2016), pp. 44–57.
  • R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett.86(14) (2001), pp. 3200.
  • R. Pastor-Satorras and A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys. Rev. E 65(3) (2002), pp. 035108.
  • B.A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos, Virus propagation on time-varying networks: Theory and immunization algorithms, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2010, pp. 99–114.
  • M.R. Sanatkar, W.N. White, B. Natarajan, C.M. Scoglio, and K.A. Garrett, Epidemic threshold of an SIS model in dynamic switching networks, IEEE Trans. Syst. Man Cybern. Syst. 46(3) (2016), pp. 345–355.
  • L. Speidel, K. Klemm, V.M. Eguíluz, and N. Masuda, Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model, New J. Phys. 18(7) (2016), pp. 073013.
  • E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, Analytical computation of the epidemic threshold on temporal networks, Phys. Rev. X 18(3) (2014), pp. 503–512.
  • A. Vazquez, B. Rácz, A. Lukács, and A.L. Barabási, Impact of non-Poissonian activity patterns on spreading processes, Phys. Rev. Lett. 98(15) (2007), pp. 158702.
  • E. Volz and L.A. Meyers, Epidemic thresholds in dynamic contact networks, J. Roy. Soc. Interface6(32) (2009), p. 233.
  • L. Wang and G.-Z. Dai, Global stability of virus spreading in complex heterogeneous networks, SIAM J. Appl. Math. 68(5) (2008), pp. 1495–1502.
  • X. Yu, S. Yuan, and T. Zhang, Persistence and ergodicity of a stochastic single species model with allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simul. 59 (2018), pp. 359–374.