2,990
Views
2
CrossRef citations to date
0
Altmetric
Tianyuan Hengyang Workshop 2020

Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous space

, &
Pages 373-396 | Received 22 Dec 2020, Accepted 27 Feb 2021, Published online: 16 Mar 2021

References

  • E.S. Amirian, Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health, Int. J. Infect. Dis. 95 (2020), pp. 363–370.
  • A.A.M. Arafa, S.Z Rida, and M. Khalil, Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection, Nonlinear Biomed. Phys. 6 (2012), p. 1.
  • A.A.M. Arafa, M. Khalil, and A. Sayed, A non-integer variable order mathematical model of human immunodeficiency virus and malaria coinfection with time delay, Complexity 2019 (2019), p. 4291017.
  • M. Arslan, B. Xu, and M.G. El-Din, Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies, Sci. Total Environ. 743 (2020), p. 140709.
  • Z. Bai, R. Peng, and X. Zhao, A reaction-diffusion malaria model with seasonality and incubation period, J. Math. Biol. 77 (2018), pp. 201–228.
  • F. Capone, V.D. Cataldis, and R.D. Luca, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol. 71 (2015), pp. 1107–1131.
  • C. Chuah, G.N. Gobert, B. Latif, C.C. Heo, and C.Y. Leow, Schistosomiasis in Malaysia: A review, Acta Trop. 190 (2019), pp. 137–143.
  • T. Chen, J. Rui, Q. Wang, Z. Zhao, J. Cui, and L. Yin, A mathematical model for simulating the transmission of Wuhan novel coronavirus, bioRxiv (2020), p. 911669. Available at http://dx.doi.org/10.1101/2020.01.19.911669.
  • J.G.B. Derraik and D. Slaney, Anthropogenic environmental change, mosquito-borne diseases and human health in New Zealand, Ecohealth 4 (2007), pp. 72–81.
  • J. Deen, M.A. Mengel, and J.D. Clemens, Epidemiology of cholera, Vaccine 38 (2020), pp. A31–A40.
  • A.M.A. El-Sayed, A.A.M. Arafa, M. Khalil, and A. Sayed, Backward bifurcation in a fractional order epidemiological model, Progr. Fract. Differ. Appl. 3 (2017), pp. 281–287.
  • Z. Feng, J.X. Velasco-Hernandez, B. Tapia-Santos, and M.C.A. Leite, A model for coupling within-host and between-host dynamics in an infectious disease, Nonlinear Dyn. 68 (2012), pp. 401–411.
  • Z. Feng, J.X. Velasco-Hernandez, and B. Tapia-Santos, A mathematical model for coupling within-host and between-host dynamics in an environmentally infectious disease, Math. Biosci. 241 (2013), pp. 49–55.
  • Z. Feng, X. Cen, Y. Zhao, and J.X. Velasco-Hernandez, Coupled within-host and between-host dynamics and evolution of virulence, Math. Biosci. 270 (2015), pp. 204–212.
  • J. Groeger, Divergence theorems and the supersphere, J. Geom. Phys. 77 (2014), pp. 13–29.
  • R. Gupta and A.K. Misra, Drinking water quality problem in Haryana, India: Prediction of human health risks, economic burden and assessment of possible intervention options, Environ. Dev. Sustain21 (2019), pp. 2097–2111.
  • P. Georgescu and H. Zhang, A Lyapunov functional for an SIRI model with nonlinear incidence of infection and relapse, Appl. Math. Comput. 219 (2013), pp. 8496–8507.
  • S. Gao, L. Chen, J.J. Nieto, and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine 24 (2006), pp. 6037–6045.
  • K.A.M. Gaythorpe, C.L. Trotter, and A.J.K. Conlan, Modelling norovirus transmission and vaccination, Vaccine 36 (2018), pp. 5565–5571.
  • M. Gallo, L. Ferrara, A. Calogero, D. Montesano, and D. Naviglio, Relationships between food and diseases: What to know to ensure food safety, Food Res. Int. 137 (2020), pp. 109414.
  • J.K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
  • S. Inaida, Y. Shobugawa, S. Matsuno, R. Saito, and H. Suzuki, The spatial diffusion of norovirus epidemics over three seasons in Tokyo, Epidemiol. Infect. 143 (2015), pp. 522–528.
  • T. Kuniya and J. Wang, Global dynamics of an SIR epidemic model with nonlocal diffusion, Nonlinear Anal. RWA 43 (2018), pp. 262–282.
  • H. Lin and F. Wang, Global dynamics of a nonlocal reaction-diffusion system modeling the West Nile virus transmission, Nonlinear Anal. RWA 46 (2019), pp. 352–373.
  • Y. Lou and X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol. 62 (2011), pp. 543–568.
  • J. Li, Y. Yang, Y. Xiao, and S. Liu, A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, J. Appl. Anal. Comput. 6 (2016), pp. 38–46.
  • Q. Liu, D. Jiang, T. Hayat, and A. Alsaedi, Dynamical behavior of a stochastic epidemic model for cholera, J. Franklin Inst. 356 (2019), pp. 7486–7514.
  • Y. Luo, L. Zhang, T. Zheng, and Z. Teng, Analysis of a diffusive virus infection model with humoral immunity cell-to-cell transmission and nonlinear incidence, Physica A 535 (2019), p. 122415.
  • J. Lu, Z. Teng, and Y. Li, An age-structured model for coupling within-host and between-host dynamics in environmentally-driven infectious diseases, Chaos Solit. Fract. 139 (2020), p. 110024.
  • Y. Luo, L. Zhang, Z. Teng, and T. Zheng, Analysis of a general multi-group reaction-diffusion epidemic model with nonlinear incidence and temporary acquired immunity, Math. Comput. Simul. 182 (2021), pp. 428–455.
  • R.E. Mickens, Nonstandard finite difference schemes for reaction-diffusion equations, Numer. Methods Part. D. E 15 (1999), pp. 201–214.
  • R.E. Mickens, Dynamics consistency: A fundamental principle for constructing nonstandard finite difference scheme for differential equation, J. Differ. Equ. Appl. 11 (2005), pp. 645–653.
  • R.E. Mickens, Numerical integration of population models satisfying conservation laws: NSFD methods, J. Biol. Dyn. 1 (2007), pp. 427–436.
  • C.L. Moe, Preventing norovirus transmission: How should we handle food handlers?, Clin. Infect. Dis.48 (2009), pp. 38–40.
  • R.H Martin and H.L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Am. Math. Soc. 321 (1990), pp. 1–44.
  • H. Miao, Z. Teng, and X. Abdurahman, Stability and Hopf bifurcation for a five-dimensional virus infection model with Beddington-DeAngelis incidence and three delays, J. Biol. Dyn. 12 (2018), pp. 146–170.
  • M. Park, Infectious disease-related laws: Prevention and control measures, Epidemiol. Health. 39 (2017), p. e2017033.
  • M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, 1967.
  • S. Palani, M. Nagarajan, A.K. Biswas, R. Reesu, and V. Paluru, Hand, foot and mouth disease in the Andaman Islands, India, Indian Pediat. 55 (2018), pp. 408–410.
  • S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ. 188 (2003), pp. 135–163.
  • H.L. Smith, Monotone Dynamical Systems: An Introduction To the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995.
  • H.L. Smith and X. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. 47 (2001), pp. 6169–6179.
  • H.R. Thieme, Convergence results and a Poincare-Bendixson trichoyomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), pp. 755–763.
  • W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst. 11 (2012), pp. 1652–1673.
  • Y. Wu and X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differ. Equ. 264 (2018), pp. 4989–5024.
  • Q. Ye, Z. Li, M. Wang, and Y. Wu, Introduction to Reaction-Diffusion Equations (In Chinese), 2nd ed., Science Press, Beijing, 2011.
  • J. Yang, R. Xu, and J. Li, Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition, Nonlinear Anal. RWA 50 (2019), pp. 192–217.
  • J. Yang, R. Xu, and H. Sun, Dynamics of a seasonal brucellosis disease model with nonlocal transmission and spatial diffusion, Commun. Nonlinear Sci. Numer. Simul. 94 (2021), p. 105551.