1,374
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Long-term transmission dynamics of tick-borne diseases involving seasonal variation and co-feeding transmission

ORCID Icon &
Pages 269-286 | Received 08 Apr 2020, Accepted 08 Apr 2021, Published online: 27 Apr 2021

References

  • M. Daniel, M. Malý, V. Danielová, B. Kříž, and P. Nuttall, Abiotic predictors and annual seasonal dynamics of Ixodes ricinus, the major disease vector of Central Europe, Parasit. Vectors 8 (2015), p. 478.
  • R.J. Eisen, L. Eisen, N.H. Ogden, and C.B. Beard, Linkages of weather and climate with Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), enzootic transmission of Borrelia burgdorferi, and Lyme disease in North America, J. Med. Entomol. 53(2) (2016), pp. 250–261.
  • G. Fan, H.R. Thieme, and H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol. 71(5) (2015), pp. 1017–1048.
  • G. Fan, Y. Lou, H.R. Thieme, and J. Wu, Stability and persistence in ODE models for populations with many stages, Math. Biosci. Eng. 12 (2015), pp. 661–686.
  • H. Gaff, L. Gross, and E. Schaefer, Results from a mathematical model for human monocytic ehrlichiosis, Clin. Microbiol. Infect. 15(2) (2009), pp. 15–16.
  • L. Gern and O. Rais, Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae), J. Med. Entomol. 1(33) (1996), pp. 189–192.
  • N.A. Hartemink, S.E. Randolph, S.A. Davis, and J.A.P. Heesterbeek, The basic reproduction number for complex disease systems: Defining R0 for tick-borne infections, Am. Nat. 171(6) (2008), pp. 743–754.
  • J.M. Heffernan, Y. Lou, and J. Wu, Range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi by migratory birds, Discrete Contin. Dyn. Syst. Ser. B 19(10) (2014), pp. 3147–3167.
  • M.W. Hirsch, H.L. Smith, and X.Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dyn. Differ. Equ. 13(1) (2001), pp. 107–131.
  • R. Jennings, Y. Kuang, H.R. Thieme, J. Wu, and X. Wu, How ticks keep ticking in the adversity of host immune reactions, J. Math. Biol. 78(5) (2019), pp. 1331–1364.
  • T. Kato, Perturbation Theory for Linear Operators, Springer Science & Business Media, Berlin Heidelberg, 2013.
  • M. Kazimírová and I. Stibraniova, Tick salivary compounds: their role in modulation of host defences and pathogen transmission, Front. Cell. Infect. Microbiol. 3 (2013), p. 43.
  • M. Labuda, L.D. Jones, T. Williams, V. Danielova, and P.A. Nuttall, Efficient transmission of tick-borne encephalitis virus between cofeeding ticks, J. Med. Entomol. 30(1) (1993), pp. 295–299.
  • M. Labuda, O. Kozuch, E. Zuffová, E. Elecková, R.S. Hails, and P.A. Nuttall, Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts, Virology 235(1) (1997), pp. 138–143.
  • M.L. Levin, D. Fish, Density-dependent factors regulating feeding success of Ixodes scapularis larvae (Acari: Ixodidae), J. Parasitol. 84(1) (1988), pp. 36–43.
  • Y. Lou, J. Wu, and X. Wu, Impact of biodiversity and seasonality on Lyme-pathogen transmission, Theor. Biol. Med. Model. 11(1) (2014), p. 50.
  • Y. Lou, L. Liu, and D. Gao, Modeling co-infection of Ixodes tick-borne pathogens, Math. Biosci. Eng.14(5&6) (2017), pp. 1301–1316.
  • M. Maliyoni, F. Chirove, H.D. Gaff, and K.S. Govinder, A stochastic tick-Borne disease model: Exploring the probability of pathogen persistence, Bull. Math. Biol. 79 (2017), 1999–2021.
  • K. Nah, F.M.G. Magpantay, Å. Bede-Fazekas, G. Röst, A.J. Trájer, X. Wu, X. Zhang, and J. Wu, Assessing systemic and non-systemic transmission risk of tick-borne encephalitis virus in Hungary, PloS one 14(6) (2019), p. e0217206.
  • R. Norman, R.G. Bowers, M. Begon, and P.J. Hudson, Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition, J. Theor. Biol. 200(1) (1999), pp. 111–118.
  • R. Norman, D. Ross, M.K. Laurenson, and P.J. Hudson, The role of non-viraemic transmission on the persistence and dynamics of a tick borne virus–Louping ill in red grouse (Lagopus lagopus scoticus) and mountain hares (Lepus timidus), J. Math. Biol. 48(2) (2004), pp. 119–134.
  • N.H. Ogden, M. Bigras-Poulin, C.J. O'callaghan, I.K. Barker, L.R. Lindsay, A. Maarouf, K.E.Smoyer-Tomic, D. Waltner-Toews, and D. Charron, A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis, Int. J. Parasitol. 35(4) (2005), pp. 375–389.
  • P. Parola and D. Raoult, Ticks and tickborne bacterial diseases in humans: an emerging infectious threat, Clin. Infect. Dis. 32(6) (2001), pp. 897–928.
  • J.H. Pettersson, I. Golovljova, S. Vene, and T.G. Jaenson, Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks in northern Europe with particular reference to Southern Sweden, Parasit. Vectors7(1) (2014), p. 102.
  • S.E. Randolph, Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa, Med. Vet. Entomol. 11(1) (1997), pp. 25–37.
  • S.E. Randolph, Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm, Ticks Tick-Borne Dis. 2(4) (2011), pp. 179–182.
  • S.E. Randolph, L. Gern, and P.A. Nuttall, Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission, Parasitol. Today 12(12) (1996), pp. 472–479.
  • S.E. Randolph, D. Miklisova, J. Lysy, D.J. Rogers, and M. Labuda, Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus, Parasitol.118(2) (1999), pp. 177–186.
  • D. Richter, R. Allgöwer, and F.R. Matuschka, Co-feeding transmission and its contribution to the perpetuation of the Lyme disease spirochete Borrelia afzelii, Emerg. Infect. Dis. 8(12) (2002), pp. 1421–1425.
  • R. Rosà and A. Pugliese, Effects of tick population dynamics and host densities on the persistence of tick-borne infections, Math. Biosci., 208(1) (2007), pp. 216–240.
  • R. Rosà, A. Pugliese, R. Norman, and P.J. Hudson, Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation, J. Theor. Biol. 224(3) (2003), pp. 359–376.
  • H.L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Amer. Math. Soc. 41 (1995), pp. 81–84.
  • P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180(1–2) (2002), pp. 29–48.
  • M.J. Voordouw, Co-feeding transmission in Lyme disease pathogens, Parasitology 142(2) (2015), pp. 290–302.
  • W. Wang and X.Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equ. 20(3) (2008), pp. 699–717.
  • A. White, E. Schaefer, C.W. Thompson, C.M. Kribs, and H. Gaff, Dynamics of two pathogens in a single tick population, Lett. Biomath. 6(1) (2019), pp. 50–66.
  • X. Wu and J. Wu, Diffusive systems with seasonality: eventually strongly order-preserving periodic processes and range expansion of tick populations, Canad. Appl. Math. Quart. 20 (2012), pp. 557–587.
  • J. Wu, X. Zhang, Transmission Dynamics of Tick-Borne Diseases with Co-Feeding, Developmental and Behavioural Diapause, Springer Nature, Switzerland AG, 2020.
  • X. Zhang and J. Wu, Implications of vector attachment and host grooming behaviour for vector population dynamics and distribution of vectors on their hosts, Appl. Math. Model. 81 (2020), pp. 1–15.
  • X. Zhang, X. Wu, and J. Wu, Critical contact rate for vector-host-pathogen oscillation involving co-feeding and diapause, J. Biol. Syst. 25(04) (2017), pp. 657–675.
  • X.Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.