1,491
Views
7
CrossRef citations to date
0
Altmetric
Tianyuan Hengyang Workshop 2020

Discrete dynamical models on Wolbachia infection frequency in mosquito populations with biased release ratios

&
Pages 320-339 | Received 10 Jun 2021, Accepted 24 Aug 2021, Published online: 17 Sep 2021

References

  • C. Ahlbrandt and A.C. Peterson, Discrete Hamiltonian System, Springer, Boston, MA, 2010.
  • H.N. Aida, H. Dieng, A.T. Nurita, M.C. Salmah, F. Miake, and B. Norasmah, The biology and demographic parameters of Aedes albopictus in northern peninsular Malaysia, Asian Pac. J. Trop. Biomed. 1(6) (2011), pp. 472–477.
  • F. Arkin, Dengue researcher faces charges in vaccine fiasco, Science 364 (2019), pp. 320.
  • F. Baldacchino, B. Caputo, F. Chandre, A. Drago, A. Della Torre, F. Montarsi, and A. Rizzolli, Control methods against invasive Aedes mosquitoes in Europe: A review, Pest Manag. Sci. 71(11) (2015), pp. 1471–1485.
  • G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou, X. Pan, Y. Xu, G. Dimopoulos, and Z. Xi, Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection, Science340 (2013), pp. 748–751.
  • E. Caspari and G.S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution 13(4) (1959), pp. 568–570.
  • J. Cohen, Dengue may bring out the worst in Zika, Science 356(6332) (2017), pp. 175–180.
  • W. Dejnirattisai, P. Supasa, W. Wongwiwat, A. Rouvinski, G. Barba-Spaeth, T. Duangchinda, A.Sakuntabhai, V.M. Cao-Lormeau, P. Malasit, and F.A. Rey, Dengue virus sero-cross-reativity drives antibody-dependent enhancement of infection with Zika virus, Nat. Immunol. 17 (2016), pp. 1102–1109.
  • S. Elaydi, An Introduction to Difference Equations, Springer, New York, 2005.
  • P.E.M. Fine, On the dynamics of symbiote-dependent cytoplasmic incompatibility in Culicine mosquitoes, J. Invertebr. Pathol. 31(1) (1978), pp. 10–18.
  • J. Guarnera and G.L. Hale, Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever, Semin. Diagn. Pathol. 36(3) (2019), pp. 170–176.
  • M. Hertig and S.B. Wolbach, Studies on Rickettsia-like micro-organisms in insects, J. Med. Res. 44(3) (1924), pp. 329–374.
  • A.A. Hoffmann, B.L. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y.S. Leong, Y. Dong, H. Cook, J. Axford, A.G. Callahan, N. Kenny, C. Omodei, E.A. McGraw, P.A. Ryan, S.A. Ritchie, M. Turelli, and S.L. O'Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476(7361) (2011), pp. 454–457.
  • A.A. Hoffmann, M. Turelli, and L.G. Harshman, Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans, Genetics 126(4) (1990), pp. 933–948.
  • L. Hu, M. Huang, M. Tang, J. Yu, and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol. 106 (2015), pp. 32–44.
  • L. Hu, M. Tang, Z. Wu, Z. Xi, and J. Yu, The threshold infection level for Wolbachia invasion in radom environment, J. Differ. Equ. 266 (2019), pp. 4377–4393.
  • M. Huang, L. Hu, and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math. 58(1) (2015), pp. 77–96.
  • M. Huang, L. Hu, and B. Zheng, Comparing the efficiency of Wolbachia driven Aedes mosquito suppression strategies, J. Appl. Anal. Comput. 9(1) (2019), pp. 211–230.
  • M. Huang, J. Luo, L. Hu, B. Zheng, and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol. 440(7) (2018), pp. 1–11.
  • M. Huang, M. Tang, J. Yu, and B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppression, Math. Biosci. Eng.16(5) (2019), pp. 4741–4757.
  • M. Huang, M. Tang, J. Yu, and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst. 40(6) (2020), pp. 3467–3484.
  • Y. Hui, G. Lin, J. Yu, and J. Li, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. Ser. B 25(12) (2020), pp. 4659–4676.
  • H. Laven, Cytoplasmic inheritance in Culex, Nature 177 (1956), pp. 141–142.
  • C.J. Mcmeniman, R.V. Lane, B.N. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O'Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypi, Science 323(5910) (2009), pp. 141–144.
  • Y. Shi and J. Yu, Wolbachia infection enhancing and decaying domains in mosquito population based on discrete models, J. Biol. Dyn. 14(1) (2020), pp. 679–695.
  • P. Somwang, J. Yanola, W. Suwan, C. Walton, N. Lumjuan, L. Prapanthadara, and P. Somboon, Enzymes-based resistant mechanism in pyrethroid resistant and susceptible Aedes aegypti strains from northern Thailand, Parasitol. Res. 109(3) (2011), pp. 531–537.
  • M. Turelli, Evolution of incompatibility-inducing microbes and their hosts, Evolution 48(5) (1994), pp. 1500–1513.
  • M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution 64(1) (2010), pp. 232–241.
  • M. Turelli and A.A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature 353(6343) (1991), pp. 440–442.
  • M. Turelli and A.A. Hoffmann, Cytoplasmic incompatibility in Drosophila simulans: Dynamics and parameter estimates from natural populations, Genetics 140(4) (1995), pp. 1319–1338.
  • Y. Wang, X. Liu, C. Li, T. Su, J. Jin, Y. Guo, D. Ren, Z. Yang, Q. Liu, and F. Meng, A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China, J. Econ. Entomol. 110(1) (2017), pp. 239–244.
  • Z. Xi and S.L. Dobson, Characterization of Wolbachia transfection efficiency by using microinjection of embryonic cytoplasm and embryo homogenate, Appl. Environ. Microbiol. 71(6) (2005), pp. 3199–3204.
  • J. Yu, Modelling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math. 78(6) (2018), pp. 3168–3187.
  • J. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equ. 269(12) (2020), pp. 10395–10415.
  • J. Yu and J. Li, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn.13(4) (2019), pp. 1–15.
  • J. Yu and J. Li, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equ. 269(7) (2020), pp. 6193–6215.
  • J. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Differ. Equ. Appl. 25(11) (2019), pp. 1549–1567.
  • B. Zheng, W. Guo, L. Hu, M. Huang, and J. Yu, Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission, Math. Biosci. Eng. 15(2) (2018), pp. 523–541.
  • B. Zheng, M. Tang, and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations , SIAM J. Appl. Math. 74(3) (2014), pp. 743–770.
  • B. Zheng, X. Liu, M. Tang, Z. Xi, and J. Yu, Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control, J. Theor. Biol. 472(7) (2019), pp. 95–109.
  • B. Zheng, M. Tang, and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math. 74(3) (2014), pp. 743–770.
  • B. Zheng, M. Tang, J. Yu, and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol. 76(1–2) (2018), pp. 235–263.
  • B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal. 11 (2022), pp. 212–224.
  • B. Zheng, J. Yu, and J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math. 81(2) (2021), pp. 718–740.
  • B. Zheng, J. Yu, Z. Xi, and M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model. 387(10) (2018), pp. 38–48.
  • X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A. Parker, J. Giles, K. Bourtzis, J. Bouyer, M. Tang, B. Zheng, J. Yu, J. Liu, J. Zhuang, Z. Hu, M. Zhang, J. Gong, X. Hong, Z. Zhang, L. Lin, Q. Liu, Z. Hu, Z. Wu, L. Baton, A. Hoffmann, and Z. Xi, Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature 572(7767) (2019), pp. 56–61.